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Preface

The focus of this book is on the psychology of expertise at weather forecasting.

- What does it mean for someone to be an “expert”?

- What does it mean for forecasters to be experts at forecasting?

- How do people become forecasters?

- How do forecasters become expert forecasters?

- How do forecasters reason as they try to understand the weather?

- How does forecasting depend on situating the forecaster and forecasting technology
in an interdependent relationship?

For each of these core questions, we consider the pertinent empirical and research.
Although we do go into some technical details, we try to make the material broadly
accessible.

It would take a second book, and more, to go beyond this focus, for example, to
discuss the psychological aspects of broadcast meteorology (e.g., how can broadcast
meteorologists express the details of a forecast without instilling bias or uncertainty
on the part of the viewer; Demuth, Morrow, and Lazo, 2009). With the advent of the
web, providing many sources of weather data, forecast information, and atmospheric
visualizations, there has been a burgeoning of research on how people (laypersons, col-
lege students) interpret and misinterpret weather forecasts and information visualiza-
tions. There is a large research and policy literature on public understanding of weather
forecasts and weather risks, how weather forecasts impact or influence human decision
making and activity, and how forecasters can provide the public with forecasts that are
clearly understandable, interpretable, and actionable (e.g., Daipha, 2012; Hoekstra et
al., 2011; Joslyn, Nadav-Greenberg, and Nichols, 2009; Lazo, Waldman, Morrow, and
Thacher, 2010; Martin et al., 2008; Murphy and Brown, 1983; Ripenberger et al., 2015;
Savelli and Joslyn, 2013; Schroder, 1993; Stewart, 2009; Stewart, Pielke, and Nath, 2004;
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Wynne, 1991; Zabini et al., 2015). A journal of the American Meteorological Society,
Weather, Climate and Society, focuses on just these issues, as well as climate change.

One of the best ways to understand the concepts and methods of a science is to
learn the history of the science, how the concepts and methods originated, and why.
This book does not recount the history of meteorology, except selectively in chapter 2.
There are a number of excellent and fascinating books on this subject, including Mon-
monier’s Air Apparent (1999), Hamblyn's The Invention of Clouds (2001), and Moore’s The
Weather Experiment (2015). Also, weather forecasting science developed significantly in
applications for the military. Winters’ Battling the Elements (1998) recounts the impact
of weather-infamous battles. Two recent sociological-ethnographic studies provide nar-
ratives dissecting the culture of the National Weather Service: one by Daipha (2007,
2012, 2016) and one by Fine (2007).

This book summarizes, reviews, and integrates current empirical knowledge about
the reasoning processes and capabilities of professional weather forecasters. We have
composed this book for a broad readership, including the general public and policy-
makers as well as people who work in areas of meteorology and its kindred disciplines
and professions. Although we do not shy away from scientific details, we try to provide
succinct explanations for the material that is more technical. Readers are referred to
other books that are excellent primers on meteorology and forecasting. An Observer’s
Guide to Clouds and Weather (2014) by Carlson et al. and The Cloudspotter’s Guide (2006)
by Pretor-Pinney are both informative and entertaining reads.
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1 Introduction

The human information processing system is the least understood, yet probably the most impor-
tant, component of forecasting accuracy. (Stewart et al., 1989, p. 24)

Psychological research of the past few decades has demonstrated limitations in people’s
ability to engage in critical thinking, and especially reasoning about probabilities. This
is important because many weather forecasts express probabilities (e.g., of rain). Dozens
of “cognitive biases” have been demonstrated, and new ones appear in the scientific
journals on a regular basis. People get anchored by previous evidence or experience and
do not try to disconfirm hypotheses (I simply do not believe in climate change). People
ignore base rates or frequency of occurrence when predicting events (Weather guessers
are no good); people miscalibrate their own understanding and tend to be overconfident
(I'm really sure it will not rain today), and so on. In sum, the literature on human cogni-
tive psychology suggests that the broad swath of humanity is not capable of sound
critical thinking, and this extends to the claim that human reasoning is inherently and
necessarily limited (see, e.g., Evans, 1989; Fischoff and Beyth, 1975; Gilovich, Griffin,
and Kahneman, 2002; Kahneman, Slovic, and Tversky, 1982; Kahneman and Tversky,
2000; Slovic, 1969).

Our aim in this book is to understand what human reasoning can achieve when
performing at its highest level of achievement and expertise. The primary motivation
for this book stems from our interest in understanding the concept and phenomena
of expertise.

We are interested in how people acquire massive and highly organized knowledge
and develop the reasoning skills and strategies that enable them to achieve the high-
est levels of performance. We are not likely to ever perfectly sample the atmosphere
(whether for lack of instrumentation, will, or funding) and not likely to ever “perfectly”
predict weather even with the most advanced computer systems. Hence, forecasting is
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an interdependence of humans and technologies. Human expertise will always be nec-
essary. This theme is developed across the chapters of this book.

Our focus is on the knowledge, perception, and reasoning of forecasters who work in
both the public and private sectors—anyone whose job it is to make a projection about
the weather. We refer to studies of the reasoning and perception of forecasters who
work for the National Weather Service (NWS), the National Oceanic and Atmospheric
Administration (NOAA), and the military.

Just what are the distinctions among meteorologists, forecasters, and broadcast
meteorologists? Meteorologists [or meteorology researchers] conduct scientific research.
Some forecasters conduct research while primarily working in a forecasting role. Most
broadcast meteorologists call themselves meteorologists because they really are (degree
to prove it). Some, however, are primarily announcers who label themselves as meteo-
rologists. Some forecasters work as consultants. Certified Consulting Meteorologists
(CCMs; [https://wcdirectory.ametsoc.org/specialties]) provide the meteorological input
into weather-based litigations and insurance claims. They conduct “hindcasting,” that
is, they reconstruct events and may reassess warning actions, public response, data
availability, and mode performance following a significant weather event in a given
forecast area. Reconstructions can involve air and vehicle accidents, slip and falls,
snow-loading, high winds, flooding, and more. They prepare reports, can be deposed,
and can be required to appear at trial.

Box 1.1
What Makes for Expertise?

As we will elaborate in chapter 7, expertise is a level of proficiency above that of the jour-
neyman. A journeyman is an individual who can perform reliably and competently with-
out supervision. Hence, the name “journeyman.” The expert is a distinguished or brilliant
journeyman, highly regarded by peers, whose judgments are uncommonly accurate and
reliable, whose performance shows consummate skill and economy of effort, and who can
deal effectively with certain types of rare or “tough” cases. Also, an expert is one who has
special skills or knowledge derived from extensive experience with subdomains.

We discuss several different literatures (meteorology, cognitive science, computer
science), and we propose models of the reasoning undertaken by expert forecasters.
Forecasters do not just issue forecasts. They also issue warnings. The two activities
involve more than different time scales; they involve different mindsets and the reli-
ance on different products and types of data (Klinger, Hahn and Rall, 2007). There are
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also many different kinds of forecasts, encompassing a range spanning seasonal climate
(long-range forecasting) to warnings just minutes in advance (nowcasting). In addi-
tion, forecasting procedures are a moving target because of continual advancements in
technology and our understanding of the weather. In other words, there is no single
model that captures how forecasters reason: There are many.

That integration points to potentially useful avenues for cognitive research that
might help train the next generations of expert forecasters and might suggest ideas for
new technological aids and display systems. The main goal of this book is to explain,
to both the general public and a technical readership, how forecasters understand and
reason about the weather in an interdependence relationship with their computers and
observational/display tools. The following excerpt from an interview with a U.S. Navy
aviation forecaster illustrates this.

Interviewer: Can you remember a situation where you did not feel you could trust or believe cer-
tain data, such as a computer model or some other product—a situation where the guidance gave
a different answer than the one you came up with?

Forecaster: All the time! For example, Hurricane Georges. The National Hurricane Center (NHC)
said the eye would go one way, but it hit Biloxi. It was a Sunday that it made landfall. I was Fore-
caster on midwatch duty Saturday evening. The Airstation was going to Condition of Readiness-2.
Planes had sortied out and ships had left the port. The forecast office was boarded up. We had to
provide information to local people (e.g., Disaster Preparedness). We had blankets, books, food,
flashlights, and camped out all weekend. The NHC had Georges tracking west-northwest. (See
National Hurricane Center Advisory #48 in box 1.2.)

Forecaster: We could see the eye coming up on the radar. We had to go with the official forecast,
but I did my own track. Georges was off the southeast shore of Louisiana. The National Hurricane
Center had the wrong track. They said the eye would go one way, but it ended up hitting Biloxi.
We looked at buoy data every few hours and did our own charts. See the chart I did at midnight
(002). [figure 1.1]

The NHC had it shifting northwest to Louisiana, more of a westward track. Based on buoy data,
we could tell that it was heading north. We could see it heading due north toward Biloxi. We saw
the eye coming up. At 2:00 AM the NHC shifted the track a little to the east out to Gulfport but
we were leery about that track... It picked up speed right after the NHC conference call, so there
was not much they could do. The hurricane sped up and head[ed] straight north. The NHC had it
shifting northwest to Louisiana, more of a westward track. But we could see it heading due north
toward Biloxi. The models had it going every which way after landfall. The NHC was off by about
four hours on predicted landfall. Still, it hit within the area of their forecast. You can’t blame the
NHC. They already had their forecast out and they had to follow it. So did we. The NHC could
always update every three hours, changing where they put the storm surge watches... It made
landfall Monday morning between Biloxi and Ocean Springs.

This example shows how forecasters depend on technology but also rely on their
own perception, reasoning, and judgment. This is a main theme of this book. A primary
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Figure 1.1
A chart showing a forecaster’s analysis of a hurricane.

concept on which we rely is the concept of “expertise,” and we argue that it is possible
for forecasters to achieve genuine expertise. We show how it is achieved, and we show
how it is applied in weather forecasting.

Motivation for the Study of Forecaster Reasoning

The question of what it means for a forecast to be “accurate” or “reliable” is discussed
in detail in chapter 5. Setting this question aside for the moment, there is no doubt that
severe weather has severe costs, illustrated in the United States by the disasters caused
by Hurricanes Katrina (New Orleans, 2005) and Sandy (New Jersey, 2012). The follow-
ing summary statistics (from reports by the National Research Council, 2001, 2006,
2010; and Risk Management Solutions, Inc., 2008) describe the impact of weather and
climate:
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Box 1.2

HURRICANE GEORGES ADVISORY NUMBER 48

ZCZC MIATCPAT2 ALL

TTAA0O0 KNHC DDHHMM

BULLETIN

NATIONAL WEATHER SERVICE MIAMI FL

4 AM CDT SUN SEP 27 1998

...DANGEROUS HURRICANE GEORGES APPROACHING THE WARNING AREA...BE
PREPARED...

A HURRICANE WARNING IS IN EFFECT FROM MORGAN CITY LOUISIANA TO

PANAMA CITY FLORIDA. A HURRICANE WARNING MEANS THAT HURRICANE CONDI-
TIONS ARE EXPECTED IN THE WARNED AREA WITHIN 24 HOURS. PREPARATIONS TO
PROTECT LIFE AND PROPERTY SHOULD BE RUSHED TO COMPLETION...

AT 4 AM CDT...0900Z... THE CENTER OF HURRICANE GEORGES WAS LOCATED NEAR
LATITUDE 28.1 NORTH, LONGITUDE 87.6 WEST...

GEORGES IS MOVING TOWARD THE NORTHWEST NEAR 10 MPH AND THIS MOTION IS
EXPECTED TO CONTINUE TODAY WITH SOME DECREASE IN FORWARD SPEED. OUTER
BANDS SHOULD GRADUALLY BEGIN TO SPREAD ACROSS THE COASTAL

SECTIONS WITHIN THE WARNING AREA SOON AND HURRICANE FORCE WINDS
SHOULD BEGIN TO AFFECT THE AREA LATER TODAY...

HURRICANE FORCE WINDS EXTEND OUTWARD UP TO 115 MILES FROM THE
CENTER...AND TROPICAL STORM FORCE WINDS EXTEND OUTWARD UP TO 175 MILES
MAINLY TO THE EAST...

. Industries sensitive to weather and climate account for approximately 25% of the
U.S. gross domestic product. Industries with direct sensitivity account for almost 10%.
- Estimated losses due to drought are $6 to $8 billion annually.

- Estimated losses due to hurricanes average $1.3 billion per year for the years
1949-1989, $10.1 billion for the years 1990-1995, and $35 billion per year for the
years 2001 to 2006. Hurricane Katrina pushed damage for 2005 over the $100 billion
mark.

« Tornados, hurricanes, and floods account for $11.4 billion in losses each year. Accord-
ing to the Property Claim Services unit of the Insurance Services Office, in October
1993, close to 900,000 claims were filed in 24 states for a total insured loss of $1.75 bil-
lion due to wind, hail, tornado, flooding, snow, ice, and freezing perils. Losses included
damage to the residential, commercial, auto, and inland marine lines of business.
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Additionally, the National Flood Insurance Program had more than 11,000 claims for
$186 million in flood-related damage (see Risk Management Solutions, 2008).

« The strong FI Nifio of 1997-1998 resulted in $2.6 billion in losses, $2 billion of which
were from crop losses.

« 70% of air traffic delays are caused by weather, resulting in $4.2 billion in lost eco-
nomic efficiency.

- Between 1980 and 2009, 96 weather disasters in the United States caused at least
$1 billion in damage, with total losses exceeding $700 billion.

« Adverse effects of weather on roads and highways can be associated with more than
7,000 deaths per year and $24 billion in economic losses.

- Between 1999 and 2008, an average of 629 weather-related fatalities occurred per
year.

« More than 60,000 deaths per year can be attributed to poor air quality due to
pollution.

As the accuracy and timeliness of forecasts improves, so does the economic value
of the forecasts. “The estimated annualized benefit [of investment in public weather
forecasts] is about $31.5 billion, compared to the $5 billion cost of generating the
information” (National Research Council, 2010 p.v1; see also Lazo et al., 2009). In the
simplest of cases, with good forecasts, a newspaper can save money by knowing it will
not need to use extra plastic sleeves for delivery on a potentially rainy day. An electric
utility can anticipate peak need and can hedge against the risk of having to purchase
extra electricity on short notice at higher cost. Corporations such as Wal-Mart operate
in-house Emergency Operations Centers to continually determine how to best mitigate
losses and prepare for weather impacts (Jackson, 2006; LaDue, 2011). People can plan
appropriately for going to an evening baseball game (see Dutton, 2002; Roebber and
Bosart, 1996a; Sheets, 1990). An Article in The New York Times in 2015 said:

Two consecutive years of volatile weather... have proved disastrous for companies that rely on
predictable temperatures to sell cold-weather clothing like sweaters and coats. So the $200 bil-
lion American apparel industry, which is filled with esoteric job titles like visual merchandiser
and fabric assistant, is adding a more familiar one: weather forecaster. Liz Claiborne, the apparel
company, has hired a climatologist from Columbia University to predict weather for its designers
to better time the shipments of seasonal garments to retailers. The discount retailer Target has
established a “climate team” to provide advice on what kind of apparel to sell throughout the
year. More and more, the answer is lighter weight, “seasonless” fabrics. And the manufacturer
Weatherproof, which supplies coats to major department stores, has bought what amounts to a
$10 million insurance policy against unusually warm weather, apparently a first in the clothing
business. [Downloaded 16 January 2015 from http://www.nytimes.com]
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The advancement of science and technology for better observing, understand-
ing, and predicting of the weather has been a U.S. national priority for some years
(National Research Council, 2006, 2010). Advances in capabilities are nowhere more
salient than the advent of NEXRAD—the NEXt generation weather RADar that most of
us see presented on televised weather reports. It has dramatically improved the ability
of forecasters to observe and understand what is going on in the atmosphere in four
dimensions and with new data arrays. Similarly, Geostationary Operational Environ-
mental Satellites (GOES) imagery has allowed forecasters to better assess upper levels
and wind patterns (satellite-derived winds), better determine the position and track of
hurricanes, and better interpret the evolution of mesoscale storm systems. The public
has benefited by being better able to visualize what TV meteorologists are discussing
and for TV meteorologists to provide better information to their viewers.

The field of meteorology is obviously of great importance to society—the predic-
tion of the tracks of hurricanes (and associated evacuation impacts), the prediction
of tornado outbreaks, and warnings for widespread winter storms, to name a few. The
importance of weather to the economy, human activities, and human well-being can-
not be underestimated, although one can cite the statistics of lives lost (thousands per
year) and property damaged (tens of billions per year) because of a large mix of differ-
ent types of severe weather. As forecasting technology and capabilities have advanced
in recent years, there has been a corresponding ramp-up in consideration of the impor-
tance of the socioeconomic aspects of weather, as reflected in a number of interdisci-
plinary research projects (Morss et al., 2008). This includes the new NOAA program
titled “Weather-Ready Nation,” which has the goal of increasing society’s responsive-
ness and resilience to extreme weather events (Lindell and Brooks, 2012)

Likewise, there has been more research on how weather forecast information plays
into human decision making (e.g., Lazo, Morss, and Demuth, 2009). Based on a sur-
vey, researchers at the National Center for Atmospheric Research estimated that the
U.S. households obtain several hundred billion forecasts each year, linked to many bil-
lions of dollars in benefits even though the majority of forecasts (more than 70%) are
obtained simply because people want to know what the weather will be. The remaining
30% of forecasts are obtained because of a need to plan various activities or respond to
dangerous weather. For the National Weather Service (NWS), one of the most important
beneficiaries of weather forecast information are Emergency Managers (see Baumgart
et al., 2008).

Like many modern domains of work, significant workforce issues have arisen in
recent years (Bordogna, 1999; Florida, 2002, 2005; Lachance, 2000; National Science
Board, 2004; Stokes, 1997). One challenge is the need to support and expand minority
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Box 1.3
Acronyms Galore

In mentioning NEXRAD and the National Weather Service, we find ourselves immediately
apologizing for the acronyms, knowing that many more are yet to come in the pages of this
book. A list is presented in appendix A. Meteorology is rife with acronyms, making their use
unavoidable. We introduce acronyms only when the terms are relied on subsequently. We
must also rely on the technical jargon of meteorology. Digression would be too easy. Even
the widely known term “weather front” represents a complex and widely misunderstood
concept. We try to use most terms in a way that lets the context imply meaning when full
technical definitions are not really necessary. In some places, we provide information in
sidebars such as this one.

Readers can also refer to the online Meteorology Glossary of the American Meteorologi-
cal Society
[http://glossary.ametsoc.org/wiki/Main_Page]

involvement in the sciences, given the changing national demographics (Armstrong
and Thompson, 2003; National Science Board, 2004). Another challenge has to do
with the fact that our nation’s pool of experts is aging (Hoffman and Hanes, 2003). In
some sectors, such as the utilities, more than 50% of the senior personnel are at or near
retirement age (Fisher, 2005; Moon, Hoffman, and Ziebell, 2009; National Public Radio,
2005). This has triggered an interest in the capture, preservation, and reuse of expertise
via a process called “knowledge management” (Becerra-Fernandez, Gonzalez, and Sab-
herwal, 2004; Brooking, 1999; Choo, 1998; Coffey and Hoffman, 2003; Crandall, Klein,
and Hoffman, 2006; Davenport and Prusak, 1998; Klein, 1999; Nonaka and Takeuchi,
1995; O’Dell and Grayson, 1998).

One thing we hope to show in this book is that the field of meteorology, and fore-
casting in particular, is ripe for applications of psychology, human factors engineering,
and cognitive ergonomics to help address these national workforce issues. The motiva-
tion for applied psychological research on topics in meteorology is quite multifaceted,
but we introduce this book by pointing to just one outstanding theme. After briefly
setting the stage in this way, we will describe the organization of the book.

The Data Overload Problem
In many domains of work, new technology has resulted in more multisourced data

than decision makers can effectively interpret and use. By the late 1980s, there were
already enough environmental satellite data in archives to keep the available image
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analysts busy for decades (Hoffman, 1990). One design for the Earth Observation
Satellite system involved the collection of more than a terabyte of multispectral data
per day. This is an order of magnitude greater than the amount of data that can fit
through the pipelines to the forecasting offices. Computer models today are generating
petabytes of computations.

Perhaps nowhere has the data overload problem been more salient than in the
domain of meteorology (Bosart, 1989; Errico, 1999; Hoffman, 1991; Monmonier, 1999).
The data overload problem began to emerge in the National Weather Service (NWS) in
the mid-1970s. Since then, observing and measuring systems have been improved and
expanded continuously, resulting in floods (pardon the pun) of atmospheric, hydro-
logic, and oceanic data. Beginning in 2006, an attempt was made to establish the Con-
stellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). It
consisted of six small satellites that measured microwave and infrared energies by using
signals from Global Positioning Systems satellites viewed edge-on and passing through
the atmosphere, providing soundings (measures of pressures, temperatures, winds).
COSMIC provided thousands of soundings per day, covering the entire globe. This
filled in crucial data for regions where it is not possible to launch instrument-carrying
balloons (radiosondes) (Serafin, MacDonald, and Gall, 2002). Although the COSMIC
satellites have been decommissioned, the program is suggestive of how atmosphere
observing systems have been expanding in scope in recent decades. Signals from the
Global Positioning System continue to be used to probe the dynamics of the atmo-
sphere (e.g., phase delays in the signals can be converted to estimates of water vapor
content) (Ware et al., 2000).

GOES Satellite Products

Images captured by the Geostationary Operational Environmental Satellites (GOES)
operated by NOAA revolutionized forecasting (and televised weather reporting as
well). The first-generation GOES satellites provided relatively low-resolution images in
selected visible and infrared bandwidths, once every half-hour. The current generation
of GOES satellites includes high-resolution radiometers and spectrometers, yielding
visible and infrared image data (in multiple bandwidths) every few mintues for signifi-
cant events such as tornado outbreaks and hurricane landfalls (Menzel and Purdom,
1994). The next generation of GOES satellites (GOES-R Series, designations GOES-14
and GOES-15; planned for launch in 2016) will collect data at faster scan rates, high
accuracies, and high resolutions, resulting in scores of products, such as aerosol particle
size, aircraft icing threat, cloud top temperatures, low cloud and fog, magnetospheric
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protons, rainfall potential, reflected solar radiation, sea and lake ice, turbulence, and
many others (Schmit et al., 2005). GOES-R is close enough to becoming operational
that the NWS has been simulating the new products and is already talking about train-
ing on the new products (Goodman, 2012; Schmit et al., 2013, 2015). (During the final
editing of this book the training was nearly complete.)

GOES data are processed by a number of enhancement algorithms relating radiated
energy to pixel brightness value. For instance, clouds with heavy precipitation potential
typically involve stronger updrafts and have higher cloud tops. Higher means colder,
and so cold infrared sources (partialing out the contribution of reflected solar illumi-
nation) can be enhanced to suggest areas where heavy precipitation is most likely. For
many years, the forecasters printed the GOES images by fax. As a 1980s generation
of workstations (AFOS-PROEFS; described in detail in chapter 2) was phased out and a
1990s generation was phased in (AWIPS; also see chapter 2), images were viewed on
cathode ray tube displays, still using gray scale (which actually had certain advantages
in terms of how the forecaster could perceive the heights of clouds; see Hoffman et al.,
1993). But it was not long before display technology made possible the use of color. An
example colorized (i.e., enhanced) GOES infrared image appears in figure 1.2 (plate 1).
Note that for figures 1.6, 1.7 (plate 5), and 1.8 (plate 6), we have used images taken at
about the same time on January 3, 2015. This was done to support the comparison of
different data types and displays.

Figure 1.2
(plate 1) A colorized infrared GOES satellite image [downloaded 18 October 2016 from http://
Www.goes.noaa.gov/goes-e.html].
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The infrared data depicted in figure 1.2 (plate 1) are sometimes shown in televised
weather forecasts using a locally determined, nonstandard coloration (usually green) to
show areas of likely precipitation, although what the infrared actually shows are areas
in which the coldest, highest thunderstorm cloud tops are located. Sometimes the tele-
vised images are composites of satellite and radar data, which also use green coloration
to show areas of precipitation. Such images show clouds as detected by the satellite and
precipitation as detected by radar.

An important GOES product is the water vapor image, which deliberately measures
in the bandwidth of infrared energy in which there is greatest energy absorption by
water vapor. This enhances the contrast among moist, dry, and cloudy regions and
offers an easy-to-see view of atmospheric circulations on small to large scales. A sample
water vapor image appears in figure 1.3 (plate 2). This too typically utilizes a standard-
ized color-coding scheme. Dryer air appears orange (depicted using saturation shades),
and air containing water vapor is depicted using a palette primarily of white, gray,
blue-gray, and blue-green hues (with yellow red, violet, and blue used to represent the
extremes).

ER VAPOR - OCT 18 16 18:45 UTC

Figure 1.3
(plate 2) A colorized GOES water vapor satellite image [downloaded 18 October 2016 from
http://www.goes.noaa.gov/goes-e.html].
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NEXRAD Radar Products

NEXRAD, the NEXt generation RADar, is a remarkable system. One forecaster referred
to it as the “Cadillac” of radars, meaning it has powerful functionalities. The capa-
bilities of NEXRAD were significant when the system was approved by Congress in
1988. Through operational use and research studies, its capabilities have continually
expanded. As a result, NEXRAD is powered by a wide array of special algorithms that
can be tailored to satisfy a variety of specific purposes, (e.g., not only whether it will
hail, but the size of the hailstones) and local constraints (e.g., terrain effects).

As in all weather radars, the energy in NEXRAD radar’s microwave pulses are
reflected back to the radar, providing information about, What’s there? But in NEXRAD,
the reflectivity is more sensitive than previous radars, so the “Base Reflectivity” prod-
ucts of NEXRAD represented a major advance. NEXRAD also capitalizes on the Doppler
effect, the shifting of the frequencies of the return microwave energy as a function of
the relative movement, toward or away from the emitter, of the objects that reflect
the pulse back to the receiver. Thus, the NEXRAD “Relative Velocity” products provide
answers to questions such as, “How fast are the winds in the storm blowing and from what
radial direction?” An even more advanced capability is provided by using a dual polar-
ized set of pulses, that is, the microwaves in one pulse are perpendicular to that of the
other. This permits better characterization of hail, improved thunderstorm warnings,
improved rainfall estimation, improved service in mountainous regions, and overall
improved data quality (i.e., decluttering from birds, insects, etc.), all of which mean
that better data will be input to the computer models [see http://www.roc.noaa.gov/
wsr88d/dualpol/DualPolOverview.aspx]. The new products are complex. Some expe-
rienced forecasters have not yet fully incorporated them into their warning decision-
making process, but many have.

A sample NEXRAD Base Reflectivity display is shown in figure 1.4 (plate 3),
which shows regions of precipitation. Variants on this product (sometimes based on
radars operated by TV stations themselves) are usually the ones utilized in televised
weather reports.

The importance of NEXRAD to forecasting activities is matched by the degree of
its contribution to data overload. The “Boston Area NEXRAD Demonstration Proj-
ect,” conducted by the U.S. Air Force in 1985, involved the generation of 450 hours
of display products over 59 days, for about 8.3 hours of products per day (Forsyth et
al., 1985). Each NEXRAD system is capable of producing dozens of different kinds of
analyses—precipitation, winds, storm cell characteristics, hail, and others. Even in its
early builds across the 1980s, NEXRAD could create more than 100 different products
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Figure 1.4
(plate 3) An example of a NEXRAD Base Reflectivity product [downloaded 3 January 2015 from
http://radar.weather.gov/ridge/Conus/full.php/].

in a given five-minute period (Hoffman 1987a; Steadham, 1998), and new products
and algorithms, to this day, are constantly being created at Weather Forecast Offices
(WFOs) as well as at the NOAA/NWS Radar Operations Center in Norman, Oklahoma.

In addition to new sensor systems, a host of new information processing worksta-
tions permit the creation of nearly endless combinations of the new data types. For
instance, the “Sat-Rad” display (now being included in many televised weather reports)
overlays data from the national NEXRAD network on an infrared satellite image. The
Regional and Mesoscale Meteorology Advanced Meteorological Satellite Demonstration
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Box 1.4
The Scales of Atmospheric Dynamics

Atmospheric dynamics must be considered on a number of scales based on areal extent and
time. Global or Planetary scale is 2,500 kilometers or more in horizontal extent and involves
weather events that span weeks—the extent and movement of large air masses and major
frontal systems across continents and oceans. Synoptic scale is continental or smaller—the
scale of many low-pressure systems. This involves wavelengths of atmospheric troughs
(relatively low pressure) and ridges (relatively higher pressure) ranging from 1,000 to 2,500
kilometers and spanning days to weeks—the size range and lifetime of most cyclonic sys-
tems, their attendant fronts, the movements of smaller air masses, and the like. Mesoscale
involves regional or local weather (a few to several hundred kilometers) over a period rang-
ing from a day or two. Finally, Microscale is roughly the size of a neighborhood (2 km or
less); events play out in a matter of minutes to hours and are addressed by what are called
“nowcasts.” At each scale, the dynamics must be appropriately described but also linked to
forcing events (called “boundary conditions”) at larger scales.

and Interpretation System (RAMSDIS) workstation supports the analysis of radar and
satellite images and image loops, overlaid with observation charts.

In addition to new data types, a number of computationally intensive computer
models run daily on supercomputers at the National Centers for Environmental Predic-
tion and other meteorology laboratories and forecast centers worldwide, and they are
used to make predictions (see Barnston et al., 1999). There are many different models
and a diverse array of products that can be derived from them. New models, using
more and more advanced physics packages, are constantly being developed, and these
produce products at many resolutions. An example output from a computer model is
presented in figure 1.5 (plate 4).

With the advent of the new data types and display systems, the computer model
outputs can be shown on displays in such a way as to compare the computer predic-
tions with actual observations—resulting in yet another layer of combinatorics to the
data display and overload problem. As will be explained in more detail in chapter
12, various graphs, charts, and tables showing such things as wind fields, tempera-
tures, and air pressure at different heights in the atmosphere can be generated from
these computer models. Computer models can be used to produce literally hundreds of
products that a forecaster can request. The model runs involve millions of regression
calculations, resulting in many thousands of forecasted data points per day, and thou-
sands of forecast products made available per day for hundreds of locations, including
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Figure 1.5

(plate 4) This display shows the 12-hour forecast for upper level winds generated on 18 October
2016 by the U.S. Navy’s Navy Operational Global Atmospheric Prediction System (NOGAPS).
[http://mpl.met.psu.edu/~fxg1/NOGAPS_0z/nogapsloopw.html]

all of the NWS WFOs in the United States (including Puerto Rico and the Virgin
Islands).

The model results are subject to postprocessing, in which statistical regression analy-
ses take local trends, regional climate, and local terrain into account and correct for
certain kinds of biases and errors in the computer model. The result is a data table that
presents the “short and sweet” of a model’s predictions, called Model Output Statistics
(MOS; see Klein and Glahn 1974). An example MOS guidance is presented in figure 1.6.
In this example, the rows refer to the specific weather variables that are predicted: At
the top, DT and HR = hours across a span of three days; then TMP = temperature, DPT
= dewpoint, CLD = cloud cover, WDR = wind direction, WSP = wind speed, P06, P12 =
percent chance of precipitation over a specified time interval, Q6, Q12 = quantitative
precipitation (rainfall and/or transformation snow to its liquid equivalent), CIG = ceil-
ing, VIS = visibility, and OBV = obstruction to vision.
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Figure 1.6

An example of Model Output Statistics (MOS) guidance. These statistics were derived from the
outputs of the North American Mesoscale Forecast System (NAM) [downloaded from ftp://tgftp.
nws.noaa.gov/SL.us008001/DF.anf/DC.mos/DS.met].

Although MOS guidance can be considered one more contributor to data overload,
it should be noted that MOS guidance is important in forecasting. MOS predictions
are especially used for weather at the surface and are thus handy for forecasters. The
MOS guidance can include quantifications of the uncertainty of each particular pre-
diction. Overall, MOS guidance is considered to be more reliable than the “raw” out-
puts of the computer models. The MOS essentially summarizes what a computational
model is saying. Indeed, some “forecasts” are basically recapitulations of the MOS (see
chapter 12).

The data overload problem increased more with the advent of the Interactive Forecast
Preparation System (IFPS) in NWS operations, which requires that forecasters construct
seven-day graphical representations of weather forecast variables on grids of about 5
kilometers (Mass, 2002; Ruth, 2002). Complicating things even further, a technique
called ensemble forecasting combines the outputs of several computer models into a
single forecast that compensates for some of the tendencies of biases of the individual
computer models (see Tracton and Kalnay, 1993). For example, one model might tend
to overpredict the depth of low-pressure centers that form off the Mid-Atlantic coast
after the low “jumps” over the Appalachian Mountains and reforms over Gulf Stream
waters. Another model might perform poorly at predicting hurricane tracks because it
does not take into account sea surface temperatures, and so on. The ensemble concept
relies on the principle that combined information from multiple sources, given that
the errors from individual sources are not too highly correlated, leads to improved
forecasts (Leutbecher and Palmer, 2008).
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An example ensemble forecast product is shown in figure 1.7 (plate 5). Model out-
puts can represent precipitation and/or winds at various heights in the atmosphere.
Outputs can depict results for any of 20 or so different computer models. The display
in figure 1.7 is from the Global Forecast System (GFS) of the National Centers for Envi-
ronmental Prediction. This data field shows “500mb heights and vorticity.” Vorticity
(in the Northern Hemisphere) is the counter-clockwise spin or curvature of air parcels
or wind flow. One can see areas of curvature fairly clearly in figure 1.7. The map essen-
tially shows a surface at which the air pressure is 500 millibars and how the air at that
layer is moving. Weather dynamics at 500 millibars are crucial in forecasting because
they provide a picture of the main weather dynamics at a continental scale: 500 mil-
libars is approximately the height in the atmosphere that divides half of the mass of
the troposphere above and below (roughly about 18,000 feet or about 5 kilometers).
(Sometimes atmospheric data at various heights are expressed relative to “geopotential
heights,” which is an adjustment based on the variation of gravity as a function of
latitude.)

Ld ‘
GrADSICOLA /\ d e

& S SRS
GFS Analysis: 127 Tue 18 OCT 2016 500mb Heights (dam), Vorticity (1e /sec)

Figure 1.7
(plate 5) An example 500-millibar product [downloaded 18 October 2016 from http://radar.
weather.gov/Conus/full_lite.php].
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Box 1.5
What Is a Millibar?

In the metric system, the bar is a unit of pressure. The unit it is based on is the pascal,
named after Blaise Pascal, Renaissance genius who pioneered hydrodynamics and hydrau-
lics. He conducted experiments which proved that barometers work because a vacuum
is created above the mercury column inside the barometer’s glass tube. Pascal studied air
pressure by making barometric measurements at ground level and also in a church bell
tower. He also experimented on how the air pressure changes during the day. The pascal
unit expresses force per unit area. A bar is 100,000 pascals, and a millibar is 100 pascals.
Air pressure relies on a millibar (thousandths of a bar) scale because air pressure decreases
considerably as elevation increases. The average air pressure at the Earth’s sea surface is
about 1,000 mb (varying between about 970 mb and 1,050 mb); 500 mb is the height in
the atmosphere at which pressure and atmospheric mass is half that at sea level. At that
height in the atmosphere, one can easily see the “troughs” and “ridges” that characterize
air masses and their interactions at the continental scale, as in figure 1.6. At the 500 mb
height, the air temperature is rarely above freezing.

The variety and vibrancy of weather products can be seen at [http://
spaghettimodels.com/]. The new information-processing and display systems have
been motivated by a decades-long plea from the meteorology community for richer
and more timely data and forecasts. A result, however, has been that forecasters can
now get overwhelmed by the flood of information. This became salient more than 25
years ago, even while it was clear that in actual forecasting contexts particular data
types and data sets are pertinent depending on the forecasting problem at hand:

Despite the flood of data from satellites and radar, forecasts [have] barely improved. This sug-
gests shortcomings in our understanding of the atmosphere as expressed in our conceptual and
numerical models ... Meteorology texts and case studies neatly and often mathematically link
divergence, vorticity, [etc.]; scientific certainty pervades the pages ... academically-trained fore-
casters thought they understood the weather; they usually believed that the lack of sufficient
data ... caused wrong predictions ... they generally viewed statistical aids as no more than tem-
porary, inadequate stop gaps, and thought that more data would automatically reduce forecast
errors ... since the 1960s, the unexpectedly small improvement in forecasts stemming from the
vast supply of satellite data threw doubt on the most important assumptions. (Ramage, 1993,
pp. 1863-1865)

This situation has not been unique to academic meteorology and civilian forecast-
ing. Ramage was echoed by Dyer (1987) in her comments on forecasting by the U.S.
Air Force:
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Increasing the amount and quality of the data available to the meteorologist by the introduc-
tion of weather radars and satellites and a denser network of surface observation stations has not
improved the average [forecast accuracy] as much as might be hoped. Indeed, the modern opera-
tional forecaster often feels overwhelmed by the amount of information that must be assimilated
in a short period. (p. 20)

Nor is this situation confined to North America. In a study of aviation forecasting
procedures in Sweden, Perby (1989) found that, “When talking to meteorologists it
is striking that they say, on the one hand, that they cannot assimilate all the avail-
able information and, on the other hand, they want more information” (p. 50). This
apparent contradiction—of wanting more data but being overwhelmed by the data
available—can be understood as a consequence of the forecaster’s need to make sense
of the weather. The forecasting process can be likened to exploration; forecasters are
always interested in finding new data or new data types that might help them make
sense of things. Given that new data products (new sensors, algorithms, visualizations,
etc.) appear all the time, the exploration never stops. As one forecaster put it, “Fishing,
fishing, always fishing for something better, something that’ll let us know what's going
to happen!”

Related to this search for meaning on the part of experienced forecasters, data
overload is acute for less experienced forecasters, ones who are less facile at search,
selection, and sensemaking of the data. In the military, many forecasters have limited
opportunity to develop expertise due to both the limited tours of duty and assignment
rotation (Dyer, 1989; Fett et al., 1997; Peak and Tag, 1989; Pliske et al., 2004: Pliske et
al., 1997). A similar situation arises in the NWS when forecasters are transferred to new
assignments—it takes months to regain proficiency when having to forecast in a new
region (Dyer, 1987). Data overload is also acute when forecasting must be done under
time pressure, which occurs often in both military and civilian forecasting contexts.
In time-pressured situations, the forecaster cannot always afford to take the time to
develop a thorough understanding of the weather situation (Uccellini et al., 1992). In
addition to impact on forecasting quality, another effect of the flood of new data, new
data types, and new technologies is an increase in the mental workload of forecasters
(see Lee, 1977).

One of the main goals of the forecaster is not just to look at data but to understand
it, integrate it into a relatively coherent whole, and figure out what will happen next.
Simply having a ton of data only helps so much. Without the tools to help this integra-
tion process, weather forecasters are overwhelmed. One way of thinking about this is
that experts should know which data source to look at under different circumstances,
and forecasters do know this. However, there is simply so much data and so many
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different ways of looking at the data that most forecasters often do not have the time
to do a full integration. Some idea of the number and types of forecasting products that
are available can be gained from surfing a number of websites. We suggest the website
of the U.S. Navy’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
[http://www.nrlmry.navy.mil/coamps-web/web/home]. We also recommend the web-
site of NOAA’s Aviation Digital Data Service [http://www.aviationweather.gov/]. This
site posts satellite and radar imagery, but it also posts pilot reports, airfield reports, and
forecasts of convection, turbulence, icing, winds, temperatures, and other data types.
In addition, products can be viewed in different modes: as individual images or time
series loops or animations.

Figure 1.8 (plate 6) is a composite screenshot from the COAMPS that gives some idea
of the sheer number and diversity of data types available to forecasters. What printed
images of this type cannot show is all the image loops and graphic animations. As the
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Figure 1.8

(plate 6) An image from the COAMPS web site showing the 2-day forecast for surface temperatures
and winds. [Downloaded 18 October 2016 from http://www.nrlmry.navy.mil/coamps-web/web/
home].
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reader can surmise, there are many kinds, including time series satellite loops, dynamic
model outputs, and so on.

Another great example is Penn State’s Weather e-Wall, in which every hyperlink
takes one to map images or animations [http://mp1l.met.psu.edu/~fxgl/ewall.html].

So, How Much Data Are There?

Exactly how much data come into a Weather Forecast Office on a daily basis? An
NWS report from the Alaska Region (Curtis, 1992) showed that in a given 12-hour
time period, forecasters could access about 400 graphic products, about two dozen
satellite images, about a thousand radar products, and a few hundred sets of observa-
tions. The report went on to predict, on the basis of systems then under development,
that within ten years, 1,400 graphics products would be available per 24-hour period,
over a thousand satellite images, over 1,200 radar products, and over 4,000 sets of
observations.

If one were to count individual displays of individual data fields (e.g., surface obser-
vations, winds at various heights, etc.), but count each animation (satellite loop or
successive radar scans) as a single data field (as opposed to a set of images), then the
number of data fields that could potentially be grabbed and used at a WFO is certainly
in the many hundreds. Some of the data products that come into WFOs are standard
and some arrive on a regular schedule (e.g., forecast discussions). Some products are
alerts (e.g., for severe weather). The number of different data displays/fields that are
grabbed depends on the forecaster, the weather problem of the day and shift, the cli-
mate, the region, and other factors as well, so it is hard to put a single number on it.
Instead, what we can ask is: What data did a particular forecaster look at during a shift,
perhaps as a representative example? Table 1.1 lists the data that were examined by
a forecaster in the northeast United States on a November 2015 night shift. This was
chosen because it was a relatively quiet shift. (Table 1.1 references a number of different
computer models. These will be explained in more detail in chapter 12.)

The data overload problem is not just a problem as it is, but a problem that is grow-
ing. Just in regard to radar, for example, new experimental radars and radar networks
are being developed to allow forecasting of severe weather at an even finer scale (Brotzge
et al., 2010; Heinselman et al., 2012). Efforts are underway to assimilate radar data into
the mechanisms of computer models (e.g., Kain et al., 2010). New display systems are
being developed to support weather radar information processing (Maese et al., 2007).
New software tools for data analysis are being developed using the open source devel-
opment model (Hesterman et al., 2015).
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Table 1.1

Chapter 1

Data examined on a night watch by a WFO forecaster in the northeast United States

Data Type

Data

~ Number of data type
products per shift

Observations

Global
Computer
Models

Regional and
Mesososcale
Computer
Models

Ensemble
Model Outputs

Text Products

Surface observations once every hour for 9-hour
shift plus once every hour for the 3 hours prior
to beginning of shift to see trends that occurred.
Upper Air Rawinsonde data two per shift from
each of three sites.

Satellite Data (continuous loops of water vapor
and infrared loops, every 15 minutes over 12
hours).

Radar (continuous loops from our office and four
surrounding offices every 6 minutes, just base
reflectivity viewed over five hours on days of
benign weather).

Global Forecast System Model out to at least 168
hours (6-hour increments).

European Centre for Medium Range Weather
Forecasting Model out to at least 168 hours
(6-hour increments).

Canadian Global Environment Multiscale Model
out to at least 168 hours (6-hour increments).

Rapid Update Model (RAP 13) out to 18 hours
(1-hour increments out to 18 hours).

High Resolution Rapid Refresh Model out to 12
hours (1-hour increments out to 12 hours).
North American Model (NAM12) (out to 84
hours).

Global Ensemble Forecast System out to 168
hours (6-hour increments).

Short-Range Ensemble Forecasts out to 87 hours
(3-hour increments).

Alphanumeric data (called “statistical guidance”)
from the Global Forecast System and the North
American Mesoscale Model out to 72 hours
(3-hour increments).

TOTAL

12
6
120
50

[\

o]

2-3

60-62
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Our discussion of weather data overload is intended not only to introduce some
ideas and technologies that we will refer to in this book, but also to lead us to some
of the real psychological questions that are the focus of this book: How do forecasters
cope with and integrate all this information? How might new technologies help in
their integration?

Coping with Data Overload

Because humans can have difficulty processing large volumes of data, there has been an
ongoing push for increased reliance on technology in the forecast process. Some data
processing is a trivial task for even simple computers. This has led to an ongoing discus-
sion concerning the future role of humans in weather forecasting (e.g., Brooks, et al.,
1992; Brooks and Doswell, 1993; Doswell, 1986a, 1986b, 1986¢; Doswell et al., 1981;
Glahn, 2003; Hoffman, 1991; Hoffman et al., 2006; Mass, 2003a, 2003b; Tennekes,
1988, 1992) and the effect of such technological overload on forecaster mental work-
load and hence on morale. Many forecasters actively appraise their conceptual under-
standing of forecast problems and, through the achievement of expertise, are able to
add value to the forecasts from the computer models, even as the computer models
improve (e.g., Bosart 2003; McIntyre 1999). This persistent advantage stems from the
human ability to deal with information at the level of meaning, something that (still)
goes beyond the capabilities of even the most sophisticated computer systems. The
persistent advantage also stems from the decision support services that the NWS pro-
vides to its stakeholders and everyone who uses its information. There are web pages
for predicting climate trends [for instance, https://www.climate.gov/decision-support]
and websites to support forecaster decision making for particular events or circum-
stances, such as the Superbowl [http://www.nws.noaa.gov/com/weatherreadynation/
news/140220_super_bowl.html#. VNfZgkLG0q8]. The persistent advantage also stems
from the adeptness of skilled practitioners at the interpretation and evaluation of infor-
mation that the computer models provide, another thing that remains outside the
capabilities of automated systems. Many studies have shown that forecasters can add
value to automated systems by adjusting their reliance on particular pieces of informa-
tion according to the meteorological situation and their local experience (Roebber,
1998; Roebber and Bosart, 1996a, 1996b; Roebber et al., 1996). In recognition of this,
the NWS has been emphasizing the importance of providing decision support services
for forecasters, government agencies, and the general public. The website climate.gov
lists more than 30 tools for mapping, monitoring, and forecasting of weather-related
events such as crop moisture stress, energy demand, air quality, and so on [https://
www.climate.gov/decision-support]


https://www.climate.gov/decision-support
http://www.nws.noaa.gov/com/weatherreadynation/news/140220_super_bowl.html#.VNfZgkLG0q8
http://www.nws.noaa.gov/com/weatherreadynation/news/140220_super_bowl.html#.VNfZgkLG0q8
https://www.climate.gov/decision-support
https://www.climate.gov/decision-support
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These natural advantages of human expertise can be blunted when forecasters are
constrained by data overload and poorly conceived and poorly designed automation.
Writing in 1992, J. C. Curtis argued that the increase in data by an order of magnitude
clearly mandated a multidisciplinary approach to the development of new workstation
systems, to support data integration and the design of new ways to facilitate commu-
nication, and to generate new ideas concerning the duties and tasks of meteorologists.
Curtis pointed out that there is an important role to be played here by applied experi-
mental psychologists, cognitive scientists, and human factors engineers.

Some Key Terms

When forecasters inspect data, they build a model of what is going on in the atmo-
sphere (Morss et al., 2015). For decades, forecasters have called this a conceptual model
to distinguish it from formal or mathematical equations or computer models of the
atmosphere (see chapter 4). The term “mental model” comes from cognitive psychol-
ogy (e.g., Anderson, 2005; Gentner and Gentner, 1983; Gentner and Stevens, 1983;
Schumacher and Czerwinski, 1992; Stevens and Collins, 1978). Forecasters are quite
comfortable with the notion, acknowledging that they form mental images of such
things as fronts and air masses and storms, and imagine the forces playing out accord-
ing to known principles. Conceptual models in forecasting take the form of diagrams
(see figure 4.1, plate 3), but forecasters also regard equations of atmospheric dynamics
as being conceptual models. Ironically, it is some psychologists who have not been
comfortable with the notion of a mental model precisely because it is mentalistic and
subjective. This stance is a reflection of psychology’s lingering hangover from behav-
iorism. In this book, we are unabashedly mentalistic (especially see chapter 10).

The formation of a mental or conceptual model is just one element within a larger
process of forecaster reasoning. Thus, the reasoning models include “mental model
formation” as one element or subprocess. But there are additional kinds of “models”
that have to be considered. We have reasoning models that describe forecaster reasoning
(chapters 4, 10). These describe sequences of data examination, hypothesis formation,
hypothesis testing, and so forth. Some such models have been discussed by forecasters,
whereas others come from psychological research.

Finally, we have computational models that meteorologists develop to mathemati-
cally express the dynamics of the atmosphere and thereby generate predictions of the
weather.

This may seem like a lot of subtly different but substantively interrelated mod-
els, but they are all necessary considerations for our topic. Across the chapters of
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this book, we are explicit about which sort of model is under discussion at any given
point.

Sources of Information Concerning Forecaster Cognition

Our empirical understanding of the cognition of forecasters comes primarily from
sources that form the organization of the chapters in this book:

- Analysis of the forecasting workplace (chapter 2),

- Studies on the question of how people come to be forecasters (chapter 3),

- The literature on meteorology in which atmospheric scientists describe their own
reasoning and strategies (chapter 4),

- Research in which the quality of forecasts is evaluated (chapter 5),

. The literature on the nature of expertise (chapter 6),

. Studies of how forecasters come to be expert forecasters (chapter 7),

- Cognitive research on forecaster knowledge (chapter 8),

« Cognitive research on forecaster perceptual skills (chapter 9),

- Cognitive research on forecaster reasoning (chapter 10),

- “Expert Systems” designed to imitate forecaster reasoning (chapter 11),

« Computer models of the atmosphere that are used in forecasting (chapter 12).

Culminating this book are two chapters that present the concept of human-machine
interdependence (in contrast to “man-versus-machine” viewpoints), and prospects for
further research and progress regarding the development of forecasting expertise and
the forecasting workforce.






2 What Is the Forecasting Workspace Like?

The forecaster sits at the center of a web of information gathering equipment, absorb-
ing and integrating the often conflicting information as it arrives, and from this distills
the essential ingredients used to produce a forecast (Targett, 1994).

Of particular relevance to the question of expertise at weather forecasting is the
nature of the forecasting workstation technologies and computer-driven visualizations
of weather data. We hinted at this in chapter 1 in the discussion of the data overload
problem, and we present more details here because we will have need to refer to these
technologies and visualizations in the subsequent chapters of this book.

Evolution of the Modern Workstation-based Workplace

The forecasting workspace layout has influences not just on forecasting procedures
but on the process by which forecasters learn how to make forecasts (LaDue, 2011).
The workspace at both governmental and commercial forecasting services is largely
open, usually with a central desk, intended to facilitate collaborative sensemaking and
forecasting. Traditionally, the workspace included a chart wall arrayed with maps and
many clipboards. Each clipboard would have printouts of one or another data type,
which forecasters could page through to see changes over time. Examples are shown
in figure 2.1.

The Rise of the Workstation: AFOS, McIDAS, and PROFS

The NWS relied for many years on a workstation system called Automation of Field
Operations and Services (AFOS; Giraytys, 1975; Wilkins and Johnson, 1975). It was a
multiconsole workstation system that could store and display weather observations
and the outputs of computer forecasting models; it also supported communication



28 Chapter 2

Figure 2.1
Traditional chart walls in weather forecasting workspaces (photos by R. Hoffman).

among facilities of the National Oceanic and Atmospheric Administration (NOAA), of
which the NWS is a part.

Figure 2.2 is a photo of the forecasting workstation at Rockefeller Center in New
York City, taken in 1992. This picture shows one of the first AFOS systems (the right-
most workstation), still in use at that time, and to the left shows the radar “scope” and
related displays of the previous generation of technology, essentially Korean war-era
technology.

A photo of an expanded AFOS workstation is shown in figure 2.3. AFOS had one
terminal for the display of alphanumeric data, a display for communications, and a dis-
play for graphics. The dominant theme in AFOS was multiple, large, and (very) heavy
steel cabinets.

AFOS was taken a step further by technologies created by the Program for Regional
Observing and Forecasting Services (PROES). Partly related to the limited graphical
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Figure 2.2
The weather forecasting workstation at Rockefeller Center, New York City, 1992.

display and manipulation capabilities of AFOS, new forecasting workstation technol-
ogy developed in the PROFS program was operationalized in the early 1980s with the
purpose of providing additional services and forecast products, especially satellite
image products (Brundage, 1986; Reynolds, 1983). The dominant theme for PROFS was
the computer-based workstation, but still relying on cathode ray tube display technol-
ogy. Figure 2.4 shows a PROFS workstation. PROES enabled the storage, display, and
dissemination of many hundreds of data products (see Wilkins and Johnson, 1975).

Schlatter (1985) described the forecasting process from the perspective of decision
making and saw the need for forecasters to refine their ability to perceive meaningful
patterns in data. He regarded the (then-new) workstation technology as providing a
significant opportunity for forecasters to anticipate developments at the synoptic scale
(continental scale of weather spanning days to weeks). Before long, however, it became
clear that the workstation approach:

as it has evolved, makes it difficult if not impossible for the forecaster to assimilate and weigh all
the available guidance information properly ... and discourages him from using his training and
experience to depart from this guidance. (Golden et al., 1978, p. 1336)

Following the introduction of PROFS, even greater advances in the information
sources and systems became available to weather forecasters.
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Figure 2.3
The AFOS workstation, the NWS workhorse for nearly 30 years (photo by R. Hoffman).

Beginning in the 1970s, researchers at the University of Wisconsin developed a
computer-based weather analysis and forecasting workstation called the Man Computer
Interactive Data Access System (McIDAS). At the beginning of the project (Chatters
and Suomi, 1975; Smith, 1975), it was recognized that forecasters and meteorologists
needed a new tool to support satellite image processing—WZFOs were still getting satel-
lite imagery via facsimile. It was also recognized that forecasters needed to spend their
time conducting analyses and not learning how to operate complex computational
equipment. Hence, there was an eye toward what we would call user-friendliness. The
innovations associated with McIDAS included the use of color displays (using color to
enhance monochrome displays), the ability to rapidly display sequences of images (sat-
ellite image loops), and capabilities to support interactive analysis (e.g., measuring the
motions and heights of clouds), with the computer automatically accessing requested
data, conducting the analysis operations, and displaying the results.

Initially, McIDAS did not live up to its initial dream; it was regarded as clumsy and
difficult to use primarily because of its reliance on a command-line interface using
cryptic command codes (see Doswell, 1992). Hence, there were waves of revamping
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Figure 2.4
A NOAA-NWS operations facility circa 1980, based on the PROEFS technology (photo by
R. Hoffman).

(see Suomi, Fox, Limaye, and Smith, 1983). McIDAS in its fifth version release [https://
www.ssec.wisc.edu/mcidas/] was installed at dozens of locations worldwide, including
a number of NOAA and U.S. Air Force installations. The main innovations introduced
by McIDAS were carried over into the workstation developed for NOAA’s Program for
Regional Observing and Forecasting Services, known as PROFS (see Schlatter, Schultz,
and Brown, 1985)

Another workstation system, called Advanced Weather Interactive Processing
System (AWIPS; Brundage, 1986; Bullock et al., 1988; Lee, 1997; Lusk, 1993; Lusk et al.,
1999), was designed to integrate and organize various data types (radar, observation
charts, etc.) and soon began replacing the AFOS-PROES system. A photo of the AWIPS
prototype workstation is shown in figure 2.5. The innovation for AWIPS was geoloca-
tion: showing all the various data fields (winds, temperatures, etc.) as “layers” projected
on a common map.


https://www.ssec.wisc.edu/mcidas/
https://www.ssec.wisc.edu/mcidas/
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Figure 2.5

A prototype AWIPS workstation (photo by R. Hoffman).

In a test of the AWIPS workstation conducted over a 4-month period, forecasters at
the Denver NWS office requested and examined more than100,000 displays involving
literally thousands of different types of products (i.e., different types of weather obser-
vations, various sorts of radar images, maps, etc.) (Roberts et al., 1997). AWIPS provided
capabilities to generate forecasts in text form and supported communication among
NOAA facilities. These were traditional functions carried out using the AFOS system. A
main new capability was to permit the overlay of diverse data types—literally hundreds
of different types of data sets and products (including satellite images, observational
charts, radar and MOS, to name just a few)—and to easily animate and zoom these.
This suite of capabilities was frequently used and was generally highly rated by opera-
tional forecasters (see Roberts et al., 1997).

Compared to previous systems, AWIPS was more user-friendly because it was iter-
ated over a long period (about 15 years), originating in the design of PROFS (Brundage,
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1986) and then evolving into a prototype that was refined based on testing in the
WFO field setting (Bullock et al., 1988; Kucera and Lusk, 1996; Lusk, 1993). “[C]are
was taken to make the system user-friendly” (Bullock et al., 1988, p. 70). The main
method was re-prototyping based on end-user feedback (see Maximuk, 1997), which
resulted in some salient developments. For instance, the ability to combine various
data types in a single display (e.g., surface pressure, wind, and vorticity) and animate
the display proved to be “popular” among NWS forecasters (Bullock et al., 1988).
Problems were also discovered in field-testing, especially the loss of legibility of alpha-
numerics during zooming.

One reason that the AWIPS prototype was positively evaluated in the field-testing
phase was because its capabilities for displaying NEXRAD data represented an improve-
ment relative to the AFOS system. Up to that point, NEXRAD had its own workstation
called the Principal User Processor (PUP). AWIPS made it easier for forecasters to actu-
ally use the radar data in their forecasting operations (see Maximuk, 1997). The PUP,
shown in figure 2.6, suffered from a number of poor human factors design aspects.
Nevertheless, once forecasters could view NEXRAD images from their main worksta-
tion, the PUP came to be used less often and then primarily for fine-tuning of the
algorithms and other special functions.

Related to AWIPS was another highly advanced system called WFO-A because it
had been created for use at NWS WFOs (Grote and Bullock, 1997) and because it was
“advanced,” that is, based on lessons learned from AWIPS and other workstation proj-
ects (Bullock et al., 1988)—even though AWIPS had become operational. The WFO-A
interface design philosophy included an emphasis on functional organization and
simplicity for use. For example, unlike previous workstation systems that necessitated
the use of multiple cryptic command-line entries to perform operations such as ani-
mating a satellite image display, in WFO-A, such operations could be performed with
single mouse clicks. Demonstrations and evaluations of AWIPS served to show which
operations and functions were important to forecasters, and so WFO-A supported fast
access to frequently used information. Additional new capabilities of WFO-A included
a browser to support the selection of models, data types, and data sets, and a product
maker that permitted the creation of special graphic products that combine any of a
number of numerical models and data types. Additionally, the technology had come
a long way from command-line interfaces and, with WFO-A, involved command win-
dows and icons.

With each generation of technology, the human factoring was more explicit and
thorough, insofar as human factors considerations were taken into account from the
onset, a new design philosophy. Furthermore, the human factoring was more thorough



34 Chapter 2

Figure 2.6
The NEXRAD Principal User Processor of PUP.

insofar as systems were created through a process of consensus design, in which teams
composed of forecasters and end-users as well as computer scientists collaborated in
prototyping, evaluation, and then re-prototyping (e.g., Sanger et al., 1995).

The human factoring was also more thorough in that the evaluations did not rely on
a simple satisficing criterion (i.e., it is “good enough”). In much software and system
development work, once a new system was built, it was presented to end-users who
would work with it for some time and then provide a subjective evaluation in what is
called “usability analysis” (see Bias and Hoffman, 2013). Because newer systems were
invariably more clever, more capable, and fancier than older systems, subjective rat-
ings typically showed that new systems were better overall. Cognitive dissonance and
demand characteristics certainly played a role in such evaluations: A person who is
evaluating a new technology is hardly likely to assume they are being shown a badly
designed system. A developer or user who is involved in the system development effort
that led to a new workstation is not likely to respond to a satisficing evaluation by say-
ing strongly negative things. A more thorough evaluation includes subjective evalua-
tions but also a formal evaluation of performance (e.g., failure in an attempt to display
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a product). It included an evaluation of performance during training evaluations (e.g.,
how quickly can forecasters learn to use each system function) as well as performance
in an operational context (i.e., weather briefings and/or forecasting operations) (e.g.,
Bias and Hoffman, 2013; Grote and Bullock, 1997; Sanger et al., 1995; Lusk, Kucera,
Roberts, and Johnson, 1999). Evaluation of new workstation systems during and imme-
diately after training was critical (as opposed to attempting to examine performance
after longer periods of practice and use) because users could learn to work with any
poorly designed interface with sufficient practice.

Prototyping for meteorological information processing systems never ceases, it
just sort of trickles off (Ballas, 2007; Doswell, 1990). Even after commissioning and

Box 2.1
Cognitive Systems Engineering Implications for Procurement

The discipline of cognitive systems engineering emerged from traditional human fac-
tors engineering in response to changes in the modern workplace: work became more
cognition-intense and computer-dependent (see Hollnagel and Woods, 1983). Studies of
diverse cognitive work systems such as NASA Mission Control, air traffic control, and emer-
gency response demonstrated the importance of involving the intended end-users in the
design process. Most weather forecasting technologies are designed and developed by teams
that include meteorologists and forecasters along with the technologists and engineers.
One example is McIDAS, whose initial design concept was developed at the University of
Wisconsin (Chatters and Suomi, 1975). A subsequent improved version was adopted by
the National Severe Storms Forecast Center. Another example is the NEXRAD network.
Meteorologists were involved in the research and development activities conducted at the
National Severe Storms Laboratory and by the U.S. Air Force (Forsyth et al., 1985) and
subsequently commercialized by private sector. Two new technologies currently in devel-
opment are phased array radar, a potential replacement for the NEXRAD network (Zrni¢
et al., 2007), and Probabilistic Hazards Information tool (Karstens et al., 2014). Both of
these technologies are undergoing testing by forecasters to ensure that their designs best
serve the weather community (e.g., Bowden et al., 2016; Heinselman et al., 2015). This
deep and continuous involvement of meteorologists and forecasters in the procurement
process (designing, protoyping, testing, re-prototyping, and operationalizing) of informa-
tion processing and workstation technologies sets meteorology apart from some domains
for which the government supports large-scale procurements. Failure to engage “end-users”
and, more broadly, failure to fully integrate cognitive systems engineering methodologies
accounts for a number of procurement failures in which extremely expensive information
processing systems were procured and only later found to be lacking in usability, usefulness,
and understandability (see Cooke and Durso, 2008; Hoffman, Cullen, and Hawley, 2016;
Hoffman and Elm, 2006; Hoffman, Neville, and Fowlkes, 2009; Neville et al., 2008).
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operationalization, systems are continuously refined, operators create kludges at the
local level (i.e., WFOs) through means as simple as the use of Post-its® to means as com-
plex as rebuilds, adding new algorithms and adding local programs. The trickling off
of the prototyping process is typical of most modern complex sociotechnical domains
(Koopman and Hoffman, 2003). Furthermore, new forecasting workstation and soft-
ware support systems are always being developed for various particular applications
(e.g., Ballas et al., 2004).

Figure 2.7 shows one of the current NWS forecasting workspaces. Among the newest
technologies is a nationwide lightning detection network that has further aided in fore-
casting and analysis of severe storms. WFOs are now using wall-mounted, large-format,
high-resolution color LED displays, allowing anyone to view satellite, radar, and other
products simultaneously from just about any place on the operations floor.

Figure 2.8 shows the watch floor at the U.S. Navy’s Fleet Weather Center in San
Diego, CA. Fleet Weather Centers provide full-spectrum weather services to facilitate
risk management, resource protection, and mission success for fleet, regional, and unit

Figure 2.7

A photo of a current WFO forecasting facility (photo by R. Hoffman)
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Figure 2.8
The watchfloor at the U.S. Navy’s Fleet Weather Center, San Diego, CA (U.S. Navy photo by Mass
Communication Specialist Seaman Bradley J. Gee/Released).

commanders. Comparison with the WFO (figure 2.5) reveals a high degree of similarity
in terms of layouts and the data types shown on the main displays.

How Many Displays?

AWIPS initially had only one primary display, and in its next iteration had three pri-
mary displays. In the first AWIPS, WFO-A, and other systems, the solution to the issue
of “how many displays” was finessed through screen sectoring. A large main sector
presented one data set or product while as many as four smaller sectors off to the left
side of the screen presented any of a number of other data types or products (see Grote
and Bullock, 1997). With a point and click operation, any of the data types could be
swapped from one of the smaller sectors to the main larger sector. Was this a good solu-
tion to the problem of multiple displays?
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In a U.S. Air Force (USAF) Air Weather Service project, Hoffman (1991) conducted
nonintrusive observations of 14 weekly synoptic/mesoscale forecasting deliberations
conducted by a group of forecasters and research meteorologists at the Air Force Geo-
physics Laboratory (Hanscom Air Force Base). In these deliberations, the forecaster
would present a summary of the weather situation, an analysis of the pertinent dynam-
ics, and a forecast that often focused on mesoscale (regional) weather, but could include
salient phenomena occurring anywhere. From the standpoint of psychology, in these
sorts of deliberations (called “forecast briefings”), the forecaster thinks out loud, a natu-
ral parallel to the think-aloud problem solving method (Ericsson and Simon, 1993) that
has been widely used in the experimental study of expertise (see, e.g., Chi, Feltovich,
and Glaser, 1981). Hoffman recorded which displays/data types were examined, for
how long, and for what reasons.

A main result was that the forecaster who was in a diagnosis or prognosis mode
needed to refer to two or three data types/displays per minute. Using a similar method-
ology, Trafton et al. (2000) found that forecasters who used a computer for forecasting
looked at an average of six visualizations per minute, whereas forecasters who used a
chart wall looked at an average of three visualizations per minute. Hegarty et al. (2010)
reported that forecasters examined an average of eight different displays/data types to
generate a forecast. Hoffman recommended that a next-generation workspace should
retain the traditional chart wall, on which a variety (dozens) of data type/fields are
posted and could be inspected at a glance (see Wilkins and Johnson, 1975).

In fact, there seems to be a huge advantage in using multiple displays including chart
walls over single-display computer visualizations. Trafton et al. found that forecasters
who used a chart wall took 35% less time than forecasters who used a single-display
computer system. This rather large time difference was not due to a speed/accuracy
tradeoft: forecasters were equally accurate regardless of whether they used either a com-
puter or a chart wall. Jang, Trickett, Schunn, and Trafton (2012) suggested that different
interfaces have different access costs, and these access costs have a large impact when
forecasters need to integrate information across different data sources.

Note in figure 2.7 that the workstation in the foreground has four displays. Fore-
casting workstations needed to include at least five displays for general forecasting
situations—one display for alphanumerics (i.e., surface observations), one for data
fields (e.g., computer models), one for satellite imagery, one for radar, and one on
which diverse data types could be overlaid and integrated. For radar, forecasters still
rely, and rely heavily, on sectoring the display: A storm or frontal system would be
examined from more than one radar, at more than one height, and using different
Doppler capabilities (e.g., rainfall, relative motion, etc.). This enabled forecasters to
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explore the data and develop their conceptual model of storm structure. But it came at
a cost in resolution: The smaller sectored fields were of small size and lower resolution
(see Maximuk, 1997). The forecaster needed to manage the sectors by point-click-zoom
operations because the data types that needed to be inspected were a function of the
weather scenario. When specific data values needed to be inspected, one of the previ-
ously sectored images could be dragged back over to the large sector, but this meant yet
more pointing and clicking. In AWIPS and WFO-A, data types could be downloaded
only through the main screen sector, so actual use of the workstations entailed even
more pointing and clicking than would be implied by the claim that system functions
involve minimized click operations (see Grote and Bullock, 1997). In the evaluation
of WFO-A, conducted over a four-month period, forecasters at the WFO engaged in
about 10,000 product swaps for just the top ten most frequently examined displays
(i.e., forecast maps, satellite images, local observations, radar, and the like) (Roberts,
Kucera, Lusk, Johnson, and Walker, 1997). These findings made a strong argument in
favor of keeping something like the traditional chart wall, which one can still see in
the forecasting workspaces at most WFOs, at most commercial forecasting services
companies, and at some TV stations.

As the previous discussion suggests, it is effectively impossible to separate the discus-
sion of workspace and workstation design from the topic of display and visualization
design.

Visualization Design

It has become widely recognized that complex data visualization is critical in many
areas of science (e.g., Davies et al., 1990; Durrett, 1987; Friedhoff, 1991; Klein and Hoff-
man, 1992) and in the practice of countless professions, such as radiology (see Lesgold,
Rubinson, Feltovich, Glaser, Klopfer, and Wang, 1988) and, of course, meteorology
(Harned, Businger, and Stephenson, 1997). Psychological factors became an important
consideration in the display of multidimensional data (see Hoffman, 1990; Hoffman
and Conway, 1990; Ware and Beatty, 1988), including cartographic data (Bertin, 1983;
Curran, 1987; MacEachren and Ganter, 1990; Olson, 1987) and topographic data (Eley,
1988). Psychological research has yielded abundant confirmation of the instructional
value of illustrations that preserve dynamical information and link that information
to explicit causal explanations (Mayer, 1989; Mayer and Anderson, 1991; Mayer and
Gallini, 1990).

The same decades that have seen increased emphasis on data visualization, dis-
play technology, and interface design have also seen the creation of literally dozens of
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software tools for the display and analysis of weather information, especially involving
new ideas about the three- and four-dimensional display of weather data (Lavin and
Cerveny, 1986; Love and Mundy, 1997; Pearce and Hoffert, 1997). Looking back to
the 1980s, as computer and information display technology improved, a number of
research teams developed visualization systems that would allow forecasters to choose
and integrate whatever variables the forecaster may want to inspect. An example is the
“MERCURY” proof-of-concept system, one of the first to use three-dimensional per-
spectival maps (Fields et al., 1992).

The basic vision of the McIDAS and PROFS (Schlatter Schultz, and Brown, 1985)
programs—that a computer system could support the forecaster in a process of data
exploration and integration—was preserved in subsequent projects. Lessons learned
from PROFS (see Brundage, 1986) and McIDAS (see Bullock et al., 1988; Lazzara et
al., 1999) helped inform the creation of a newer generation of workstation systems,
largely through a more thorough and explicit consideration of interface design and
the human factors of data visualization (see Corbett, Mueller, Burghart, Gould, and
Granger, 1994; Grote and Bullock, 1997; Lazzara et al., 1999; Sanger, Steadham, Jarboe,
Schlegel, and Sellakannu, 1995).

For example, a system called Zeb was developed at the National Center for Atmo-
spheric Research (NCAR) to support meteorological research, largely through the use
of superpositioning of data types (Corbett et al., 1994). For instance, a field of graphic
elements called “wind barbs” (which show winds speeds and directions; see Figure
9.1) could be overlaid on a surface map that also showed the locations of radars, with
displays from the individual radars shown in a sector below the map; a satellite image
could be overlaid with a map of temperature contours, and so on. Looking across
all the various systems, capabilities ranged from mesoscale forecasting to specialized
synoptic-scale analysis and forecasting (e.g., of lightning maps, hurricane tracks, and
marine conditions). The capabilities of these systems typically included data acquisi-
tion (from NOAA and other sources, including satellites), data display and analysis,
and product generation. As far as user-friendliness is concerned, all of the new systems
had online help (not necessarily helpful help) and relied on pop-up menus (not neces-
sarily friendly) and direct-manipulation icon systems (also not necessarily friendly),
although interaction could also be at a command code level for individuals who were
more familiar with system operations and functions.

A great many specialized weather information display systems have been developed
at universities, by commercial firms, and for civilian and military forecasting in a host
of countries, including Australia, the United Kingdom, Canada, France, Germany, as
well as the United States. Some systems, such as the Cloud Scene Simulation Model
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(Raffensberger, Cianciolo, Schmidt, and Stearns, 1997), were designed to support train-
ing rather than operational forecasting. For some systems, the displays and products
were electronic versions of traditional meteorological charts. Technical reports on new
visualization systems emphasized the utility of the display and data integration capa-
bilities and the usability of their interfaces (see, e.g., Bullock et al., 1988; Jesuroga,
Drake, Cowie, and Himes, 1997; Kelly and Gigliotti, 1997; Steadham, Swartz, Schlegel,
Roberts, and Hoffman, 1997). Commercial products include the Advanced Meteoro-
logical Image and Graphics Analysis System (AMIGAS) of Control Data, The Automated
Weather Distribution system of GTE, the RADAC 2100 radar display and analysis sys-
tem, the SURECAST forecasting support system, and the TRIMETS display system all of
Kavouras, Inc., the WEATHER systems of WSI Corporation, and various systems and
displays created by The Weather Channel. The proliferation of websites that provide
weather information has stimulated research on the design of visualizations specifi-
cally for the web, web page usability, and the understandability of atmospheric data by
the general public (e.g., Oakley and Daudert, 2016).

Many private sector weather companies have developed 3-D and 4-D display sys-
tems that take government- or research-focused systems to new levels because their
focus also includes the public and other end-users. We exemplify some of the most
recent developments in weather data visualization by describing the Perceptual Rule-
based Architecture for Visualizing Data Accurately (PRAVDA) system created by a col-
laboration of scientists from the NOAA Forecast Systems Laboratory and IBM (Rhyne
et al., 1992; Rogowitz and Treinish, 1993, 1996; Treinish, 1997, 2000, 2002; Treinish
and Rogowitz, 1997) and by describing Met.3D, an open-source tool for the interac-
tive three-dimensional visualization of the predictions generated by computer models
(Rautenhaus et al., 2013, 2015a, 2015b).

PRAVDA and Met.3D

One of the striking capabilities of PRAVDA was to go from radar data to generate a four-
dimensional picture of cloud structures, in which translucence and desaturated (pas-
tel) hues are used to depict, for instance, isosurfaces of radar reflectivities (i.e., cloud
water density), overlaid on a depiction of the terrain using a computer-generated map.
Laid over the map are vectors showing wind speeds and directions, as well as colored
regions showing total precipitation. In displays of this sort, a number of data types can
be depicted in a single display, in a way that supports pattern recognition and also the
precise analysis of numerical data. Examples appear in figures 2.9 (plate 7) and 2.10
(plate 8).
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Figure 2.9
(plate 7) An example PRAVDA display (courtesy of Lloyd Treinish, IBM) [http://www.research.
ibm.com/dx/bonuspak/html/bonuspak295.html].

The display techniques used in PRAVDA were based on perceptual principles (Rhyne
et al., 1992) and relied on a human-centered strategy for visualization based on the
need to preserve the fidelity of the original data and the need to take into account
known facts about human perception and cognition. The PRAVDA project was initially
conceived to help forecasters cope with the data overload problem. The approach to
solving the problem was based on the belief that properly designed displays could
support the interpretation and integration of weather data via perceptual capabilities
rather than through the sorts of analytical thinking that is mandated in traditional
displays (i.e., the need to inspect and analyze multiple, static, two-dimensional contour
maps). At the same time, the system had to preserve the fidelity of the data, especially
observational data, and it had to define coordinate systems onto which different data
types could be registered across time in a topologically invariant space—all to permit
precise analysis.

PRAVDA also served as an example of the role that human-centering considerations
could play in display design. They created an advisory tool for the specification of
appropriate color-to-data mappings depending on whether the goal of visualization is
exploration or presentation. PRAVDA included a rule base and a library of color maps


http://www.research.ibm.com/dx/bonuspak/html/bonuspak295.html
http://www.research.ibm.com/dx/bonuspak/html/bonuspak295.html

What Is the Forecasting Workspace Like? 43

04-Aug-1996 - 21:00 EDT

Surface Total Precipitation & Win
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Figure 2.10
(plate 8) An example PRAVDA display (courtesy of Lloyd Treinish, IBM) [http://www.research.
ibm.com/dx/bonuspak/html/bonuspak295.html].

that together permitted users to make decisions about the visualization of data with-
out requiring them to become experts in human vision, data structures, visualization
algorithms, or color theory. In other words, PRAVDA placed the visualization design
process in the hands of the meteorologist. The rule-base ensured that data content
was reflected in the image displays and that perceptual artifacts were not erroneously
interpreted as data features (e.g., the artifacts that often occur in the use of the stan-
dard cartographic palette of highly saturated primary hues—the “rainbow” code; see
Hoffman et al., 1993). This was accomplished by including in the color map library
a set of specifications for mapping as a function of the scalar nature of the data (i.e.,
ratio, interval, monotonic) and specifications based on psychophysical scaling data
on color discriminability (e.g., S. S. Stevens, 1966). A result of the rule-based map-
pings was that luminance and saturation were determined by the spatial frequency of
the data that were to be depicted (e.g., mesoscale humidity is a low spatial frequency
data type, whereas radar reflectivity is a high spatial frequency data type). For example,
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in a map for a monochrome display, a monotonic increase in pixel luminance
goes hand in hand with a monotonic increase in perceived magnitude. Thus, the
resulting display makes details apparent, details that can be masked by traditional
uses of color (see figures 1-12 in Treinish and Rogowitz, 1997). (Although not a focus
here, it is important to recognize that color vision weakness affects about 10% of
the U.S. population, mostly male. It can affect both forecasting and dissemination
systems.)

The PRAVDA system also provides advice on representation depending on whether
the goal of visualization is exploration, analysis, or presentation. Specifically, the devel-
opers of PRAVADA provided guidelines for how to collapse multiple variables and data
types into individual displays and guidelines to support the user in defining coordinate
systems onto which data may be registered in space and time. One of PRAVDA's per-
spectival displays portrays horizontal winds (using a color palette of saturation shades
of violet), relative humidity (using saturation shades of brown), surface temperature
overlaid on the base map (using a two-tone palette of saturation shades of blue and
green-blue), and air pressure (indicated in a semi-transparent vertical plane using satu-
ration shades of blue-violet and green and a palette of saturation shades of green-blue
and blue-green). Also depicted are three-dimensional cloud structures. For all of their
graphic products, the use of perspective, depth pseudoplanes, and animation permits
the perceptual discrimination of the multiple variables (images can be viewed at http://
www.research.ibm.com/people/l/lloydt/).

Met.3D

This open source software system was created for the purpose of allowing meteorolo-
gists to explore the outputs of computer models developed at the European Center for
Medium-Range Weather Forecasts (ECMREF). The primary application has been to avia-
tion forecasting. The system enables users to explore the contributions of individual
computer models to a merged or ensemble forecast, especially with respect to uncer-
tainties that are inherent to computer modeling. Figure 2.11 (plate 9) illustrates how
MET.3D coordinates multiple perspectives. Figure 2.11 (plate 9) also shows wind speeds
at various heights, with a vertical cross-section that employs colors to show potential
temperature. Ordinarily, winds speeds are depicted in a two-dimensional chart winds
as a particular height in the atmosphere, drawn over a surface map. In MET.3D, the
cross-section can be interactively moved by the user to explore changes in wind speed
at heights relative to the surface map.
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Figure 2.11
(plate 9) An example display in MET.3D (courtesy of Marc Rautenhaus, Technische Universitat
Miinchen).

Conclusions

Over the decades in which forecasting became dependent on computational systems,
the human factors of workstations and visualizations became well understood (Egg-
leston, Roth, and Scott, 2003.;Hoffman, 1987a, 1991, 1997; Hoffman et al., 1993; Scott
et al., 2005). Despite the need for standardization, there remained a critical need for
flexibility. Onsite (or regional) expertise should be utilized to the fullest extent to craft
“locally tailored” variations on any standardized workstation system, its display default
features, menus, and so on (Doswell, 1992; Lazzara et al., 1999). Human-computer
interaction should be guided by the use of human-centered interface and menu
schemes (Steadham, Swartz, Schlegel, Roberts, and Hoffman, 1997). The visualization
software needs to permit the concatenation of diverse data types: System capabilities
that aid synthesis include animation and looping, re-mapping so that various data sets
(e.g., satellite and radar) can be superimposed on one another, and three-dimensional
perspectives of selected data sets (Bullock, 1985). Features from diverse data types need
to be combined (e.g., an area of strong convection shown on a satellite image and an
area of high winds taken off a radar image) through such operations as point and drag
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(e.g., clicking on a feature such as a frontal boundary or a low-pressure center symbol
and dragging it onto a conceptual modeling screen).

Above all, the technology needs to support the forecaster’s process of forming a
mental conceptual model of what is going on in the atmosphere:

the use of conceptual models during the hypothesis step can greatly assist the meteorologist in
understanding what is currently happening. ... Since there is rarely time to look up schematic
representations of conceptual models ... the workstation should support the hypothesis step
by storing schematic representations of conceptual models so that they can be displayed on
the workstation and compared with current conditions. (Bullock, 1985, p. 4; see also Schlatter,
1986)

A Day in the Life: A Cautionary Tale about Work System Design

It is important to not get stuck in the notion that the unit of analysis is the “one
person-one machine” dyad. The cognitive work has to be considered with reference to
the larger workplace and the collaborative teamwork activities engaged therein. Fore-
casting has a strong social component within the forecasting office, as frequent con-
versations take place while forecasts are formulated (Daipha, 2007; Hahn et al., 2002;
Morss and Ralph, 2007). Forecasters incorporate others’ knowledge, experience, and
interpretations into their forecasts (Daipha, 2007; Fine, 2007; Hahn et al., 2002; Morss
and Ralph, 2007). Forecasters get direct, immediate feedback from others, and they
conduct “postmortems” to relate data and information available to the actual weather
outcomes (Daipha, 2007; Hahn et al., 2002). The true cognitive work is not limited to
the mental efforts of the individual or individuals who “work at” a workstation. This
was highlighted in a study of the watchfloor operations at the weather forecasting
facility at Pensacola Naval Air Station (Hoffman, Coffey, and Ford, 2000). Hoffman
and his colleagues observed watch floor operations over a period of about a year. The
actual work of the forecasters—filling out weather information on a form used to give
preflight information to pilots and pilot trainers—was often disconnected from the
“true work” that occurred when pilots came into the weather facility to talk to the
forecasters.

Pilots (and pilot trainers) would often come to the forecasting facility, even though
they could get the preflight weather information over the local Internet). As revealed
in the in-depth interviews Hoffman et al. (2000) conducted, pilots sought guidance in
person from a forecaster in whom they had developed trust. Figure 2.12 shows a pilot
in discussion with a forecaster. Note that they can engage (more or less directly) but
cannot co-refer to the data displays. They are not referencing the completed preflight
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Figure 2.12
A pilot getting preflight weather information from a Forecast Duty Officer (photograph by R. R.
Hoffman).

weather briefing form (which is lying on the counter). The pilot is asking the forecaster
particular questions (e.g., How bad will the turbulence really be as I make it over the
Rockies?).

When workstation and display systems were introduced at this facility, they cre-
ated a “Wall of Thunder,” shown in figure 2.13. The doorway into the facility is just
to the left in this image. The advantage is that pilots and pilot trainers could enter the
weather forecasting office, turn to their left, and immediately see the weather data
displays. But there was a crucial disadvantage: They could not directly engage with the
forecaster, who was mostly hidden behind a partition.

The workspace layout made it impossible for forecasters and pilots to co-reference
the displays. Thus, the recommendation was to change the layout, and this involved
re-creating a traditional chart wall (figure 2.14), which had been removed when the
Wall of Thunder was emplaced. This rearrangement also allowed the forecasters to
work adjacent to the pilots and pilot trainers.



Figure 2.13
The “Wall of Thunder.”

Figure 2.14
The watchfloor layout was rearranged to enable forecasters and pilots to reference charts and dis-
plays during the in-person briefings.



3 How Do People Come to Be Forecasters?

A good forecast is a necessary precursor to the myriad of decisions that individuals, corporations,
organizations, and governments make, yet despite its importance, forecasting is rarely explicitly
taught and there is an absence of literature describing how one learns to forecast. (LaDue,
2011, p. 2)

Many meteorologists and forecasters explain that they developed an interest in weather
in childhood, often by experiencing striking events such as tornadoes or severe storms.
In one way or another they get hooked, and weather events become salient to them
(Stewart, 2009). They routinely watched TV weather reports, watched the skies above,
and read book after book about weather. Some built their own weather stations and/
or started keeping records of wind, temperature, precipitation, and other weather vari-
ables. Some even started to chase storms. We know of a number of meteorologists and
forecasters who were making reasonably good local area forecasts even while they were
in high school. Some of these became their school’s morning weather person or even
wrote weather forecast columns for local newspapers.

The National Weather Camp Program (Morris, Mogil, and Tsann-Wang, 2012) brings
together students with interests in weather and related sciences into commuting or
residential settings for one- or two-week-long programs. Whether middle school or
high school level, students are almost always amazed that so many others share their
weather interest; almost all students have either experienced a life-altering weather
event or have become been a TV weather junkie. Many weather campers go on to col-
lege and enter into weather or related programs.

It is common for farmers, pilots, fishermen, mountain climbers, and others to
develop forecasting skills by virtue of long periods of exposure to the elements while
working outside or pursuing their main interests (Hontarrede, 1998). An observant per-
son might notice, for example, increasing numbers of pufty low-level cumulus clouds
that begin to extend taller than they are wide—a good signal that the atmosphere is
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becoming conducive to thunderstorm development. The air might become still as the
cloud base above becomes dark—a good sign you are under an updraft of a storm, and
rain or lightning might be imminent. Forecasting skills may be developed through
perceptive observation, correlating events together in time and remembering previous
evolutions or outcomes of observations. The atmosphere provides many clues.

Countering such early developing and widespread intrinsic motivation for under-
standing and predicting the weather has been the way in which forecasting training
has been approached.

Historical Background

Historically, there has been a disconnect between academic education in the science of
meteorology and on-the-job training in the profession of forecasting.

Just when meteorology was becoming a science in the mid-eighteenth century, the
British government nearly banned forecasting (Hontarrede, 1998). British scientists had
been pressuring their government to stop what they saw as an activity similar to that
of astrologers and charlatans. Yet even while being disdained by some scientists into
the mid-1850s, forecasting was becoming an important application of meteorology for
maritime activities. Meteorology emerged as an academic discipline in the 1940s, when
a handful of graduate programs were established (Allen, 2001). Historical writings on
the founding of meteorology departments at colleges and universities (e.g., Koelsch,
1996) described a struggle for an identity for the discipline—was it a natural science or
a physical science? Was academic meteorology the place for forecasting?

Forecasting became more sophisticated after development of the telegraph and other
long-distance means of real-time communication meant that weather maps could be
constructed. World wars benefited from training and utilization of forecasting skills,
after which military forecasters sought civilian applications for their skills (Spiegler,
1996). Over this period of approximately 100 years, forecasting became an increasingly
legitimate activity and useful for a variety of purposes. Schools temporarily shifted
their focus to prepare forecasters for operations during World War II (Allen, 2001), but
how they did so was not well documented. Yet there was still opposition from the aca-
demics. In an address to the World Meteorological Organization, Baum (1975) asserted
that forecasting was an application of the science and therefore outside the purview of
the university. “Many research meteorologists pursue an entire career without ever hav-
ing to analyze a real weather map” (Doswell, Lemon, and Maddox, 1981, p. 985). The
assumption made by colleges and universities was that “...the student seeking a career
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in forecasting generally is regarded as one who should terminate his or her education
at the bachelor’s level” (p. 985).

Knox and Ackerman (2005) conducted a survey of 750 students taking introductory
meteorology at two major U.S. universities. The sample was demographically represen-
tative of the student populations of the universities, although many students were tak-
ing the course to satisfy a science requirement. The questionnaire asked, “What specific
question about the weather and climate would you most like to have answered in this
class?” Interestingly, the most frequent response was how to do weather forecasting.
Various forms of severe weather (e.g., tornados, floods, etc.) combined accounted for
only about 25% of the responses, but after forecasting tornadoes was the second most
frequently cited interest. “The strong interest in forecasting rivals students’ better-
known fascination with severe weather” (p. 1434).

Forecasting contests are a common and favorite activity, and many universities sup-
port them.

Forecasting Training within Meteorological Education

Although local collegiate forecasting contests had been held prior to 1970, an intercol-
legiate forecasting contest was started by the mid-1970s (Meyer, 1986). Studies of the
results from the contests have generally shown that enthused students can achieve
reasonable levels of forecasting skill quickly. In an experiment that investigated learn-
ing during a forecasting contest, students showed a significant rise in skill for precipita-
tion forecasting on days when they had to write a forecast discussion (Market, 2006).
Apparently, students can achieve a surprising level of skill and do so more rapidly than
faculty expect (Sanders, 1973).

Roebber and Bosart (1996b) examined data from a forecasting contest conducted at
the State University of New York-Albany over the years 1988-1992, in which groups of
10 to 20 students and meteorology faculty created forecasts of daily high and low tem-
peratures and Probability of Precipitation (POP) for about 66 days in each of the two
academic semesters each year. Each student was placed into a high- or low-experienced
group according to background (i.e., interest in weather, familiarity with weather data
types, etc.). There was a statistically significant difference in the forecast skill scores
comparing participants when grouped according to high versus low experience but not
when grouped by education level (i.e., students versus faculty). In other words, there
was not a significant difference between university faculty and their students, despite
faculty having much deeper knowledge of meteorological science, but this needs to
be understood in context. The skill scores of forecasts by experienced students and
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meteorologist faculty were all uniformly high (in the range of 0.98 to 0.91) and did
not suffer from conditional bias, that is, any tendency for forecasts to take on extreme
values when one or more individual data values (e.g., surface dewpoint, windspeed,
etc.) took on an extreme value. The results also confirmed the finding that skill scores
of consensus forecasts made in the academic setting can approximate those of the NWS
forecasts (see also Bosart, 1983; Sanders, 1986), and that the development of profi-
ciency at forecasting precipitation involves a longer time frame than the development
of proficiency at forecasting temperatures.

This study also showed that forecasting skill is determined by experience that hap-
pens beyond the baseline provided by meteorological training, that is, experience that
occurs in the few years after the apprentice stage, just before the journeyman stage is
reached (see chapter 7). The first ten or so forecasts showed high errors relative to the
consensus forecast, a break-in period when the forecaster learns the basic forecasting
process. In another study, Gedzelman (1978) found that students gain appreciable
forecasting skill by the 30th forecast. The skill advantage that develops subsequently
seems related to developing a consistent procedure, but also on the ability to recognize
when to adjust the computer model outputs based on the weather pattern and know
when deviations from a standard forecasting procedure are called for (see also Roeb-
ber, 1998).

Roebber, Bosart, and Forbes (1996) examined data from the 1992-1993 National
Collegiate Weather Forecasting Contest. In this contest, teams of student forecasters
from a number of North American colleges generated forecasts for a range of sites.
Roebber et al. (1996) examined errors in daily temperature forecasts as a function of
distance from the team home site. Although high experience-level participants (faculty
and graduate students) suffered less from moving their forecasts to a distant site, for
both high- and low-experience (undergraduate) groups, distance from the familiar site
significantly impacted forecast accuracy—the differences in errors comparing distant to
familiar sites were half again as much as the differences in errors comparing the high-
and low-experience groups. Roebber et al. (1996) concluded that greater experience is
reflected in:

- a greater ability to take weather conditions into account in understanding the cau-
sation of precipitation (e.g., precipitation due to fronts, troughs, weak warm fronts,
upslope winds, intensifying cyclonic activity, etc.), and

- a greater ability to adjust computer model guidance in light of the weather situation,
that is, to take computer model biases or limitations into account (these and other
abilities of experts are discussed in more detail in chapters 8, 9, and 10).



How Do People Come to Be Forecasters? 53

The results of the research of Roebber et al. (1996) also speak to the importance of
understanding the weather down to the level of particular local effects—prevailing
and/or seasonal winds and the effects of snow cover in nearby mountainous regions.
Using local knowledge, the more experienced forecasters can make better use of the
data cues in forming mental models that link observations to the forecasted events via
causal explanation. An example would be to explain why showers and thunderstorms
are anticipated for a region by saying that a low-pressure system was bringing moisture
into the region or by saying that diurnal solar heating will make storms most likely just
after sunset [see, e.g., http://www.wpc.ncep.noaa.gov/html/discuss.shtml].

Whereas the Roebber et al. (1996) studies looked at skill development in the context
of forecasting competitions, another study examined the development of forecasting
skill in the academic context. Bond and Mass (2009) studied the development of skill
at daily forecasting on the part of seniors in a course on atmospheric dynamics and
thermodynamics that had a forecasting laboratory associated with it. The researchers
were able to tap a large data set: courses for the years 1997 to 2007. Over the academic
quarter, students made next-day forecasts of ceiling/visibility, winds, temperatures, pre-
cipitation probability, and severe storm probability. Available to the students were the
data on which forecasters ordinarily rely: surface and upper level observations, satel-
lite images, radar, and outputs from certain computer models (i.e., the Global Forecast
System and the North American Mesoscale Forecast System model [NAM]; see table
12.1). The students were prohibited from relying on what are called Model Output
Statistics (MOS; see chapter 1): “based on the idea that inexperienced forecasters will
use model output statistics as a crutch ... using model output statistics likely delays the
understanding of how various elements of the weather relate to larger-scale aspects of
the atmosphere” (Bond and Mass, 2009, p. 1142). Student forecasts were scored using
thresholds and ranges for the various parameters and a correction based on a “persis-
tence forecast” of what would be expected in the current weather dynamics persisted
into the next day (e.g., tomorrow’s high temperature is likely to be the same as today’s
if no weather event such as the passage of a front changes things).

In a given academic quarter, skill scores showed an increase, but most of the
improvement happened early in the quarter, and there was considerable variability
and a marked difference comparing the best and worst performing students. The better
forecasters tended to be the students who did better on the tests given in the lecture
portion of the course, but again there was considerable variability. The top students
had an immediate edge, continued to improve, and by the end of the term had skill
approaching that of their instructor:
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the typical student requires about 6 weeks or about 25 forecasts to gain basic proficiency in next-
day forecasts of clouds, winds and temperatures ... it appears that this proficiency arises from
both practice in the drill of forecasting and from the development of local knowledge, that is, of
the nature of the weather in particular locations. While the best student forecasters have compa-
rable skill to the instructor during the latter portion of the class, his prior experience gives him a
sizable advantage early in the class ... the flat learning curves for [certain regional forecasts] reflect
presumably their preexisting knowledge of the [local] weather ... typical students have almost
immediate skill at [precipitation forecasts, which] may be attributable to all forecasters relying on
basically the same [computer model output]. (Bond and Mass, 2009, p. 1147)

Confirming the results of competitions studies, proficiency was gained by students
over the academic term. Forecasting contests are certainly a way to assess student learn-
ing at forecasting (Harrington, Cerveny, and Hobgood, 1991), but are they, or should
they be an element of meteorological education?

College-Level Education

Meteorology programs are found today in a variety of departments ranging from geog-
raphy to math, physics, and even engineering. There are about 100 undergraduate and
graduate programs (American Meteorological Society, 2003). (By comparison, there are
about 300 collegiate programs in mechanical engineering.) As for any academic spe-
cialization, the evaluation and development of courses and curricula in meteorology
has been a focus of colleges and universities (e.g., Ulanski, 1993). The benefits of expo-
sure to meteorology for general education and skill development are often noted (e.g.,
Spaid, 1994). The AMS has both education committees and regular conferences on just
meteorological education. Suggestive of the perceived importance, the Bulletin of the
American Meteorological Society regularly publishes articles on educational innovation
and has a regular department on Educational Affairs. A search through just the years
1999 through and 2001 revealed a host of publications on meteorology education and
innovation (e.g., Brown et al., 1999; Croft, 1999; Gallus et al., 2000; Ibarra et al., 1999;
Morss, 2000; Mullendore and Tilley, 2014; Phoebus et al., 2001; Smith, 2000; Takle,
2000). Educators often report on new approaches to instruction specifically in fore-
casting (e.g., Yarger et al., 2000). Training in computer science and its applications in
meteorology has become a salient and important component in curricula (e.g., Koval
and Young, 2001).

What about college-level training in forecasting? In a 2000 presentation at the New
York Academy of Science, Joe Bastardi worried about the state of forecasting education
from his perspective as a senior forecaster at AccuWeather. He had seen generations of
forecasters just entering the workforce and had noted their training shortfalls:
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the way forecasting is being taught today is a problem ... [there is a need to] intensify the fore-
casting emphasis in the curriculum and make it hard. I am not suggesting that we get rid of the
math and physics [but] the idea that one can send someone out with 90% of their major course
curriculum having nothing whatsoever to do with what they are working on, to me is nuts. (Bas-
tardi, 2000, handout memo)

We conducted a web-based informal survey of the course offerings of undergradu-
ate meteorology programs in existence today and confirmed, to our surprise, that few
schools list courses that are explicitly about instruction in forecasting. Some of the
few undergraduate institutions that have courses on forecasting have their students
take those courses even before much of the science of meteorology has been learned.
For example, St. Cloud State requires only an introductory meteorology course as pre-
requisite to its forecasting course. Iowa State University went so far as to incorporate
a forecasting activity into an introductory meteorology course taken by nonmajors
(Yarger et al., 2000). The University of Oklahoma encourages meteorology students to
start forecasting as freshmen through the student-run Oklahoma Weather Lab [http://
http://owl.ou.edu].Although the latter school uses forecasting as a way to maintain
students’ interest in meteorology during the time students must take several necessary
prerequisite mathematics and physics courses, Yarger and his colleagues used forecast-
ing in a different way: to encourage problem solving, collaboration, and communica-
tion among students in the course. All these collegiate cases suggest that an ability to
anticipate weather changes does not require an extensive background in the science of
meteorology, and forecasting experience and practice contribute to the acquisition of
knowledge in meteorology.

Thompson (1987) pointed out in an address to the 67th annual meeting of the
American Meteorological Society that much of what is taught in university courses
comes from research, particularly that of the professors. Especially on the graduate
level, Thompson said, today’s students become tomorrow’s researchers not tomorrow’s
forecasters. Many of those researchers go on to work in universities, and the result is
a continued focus in university courses on the latest scientific endeavors. Most atmo-
spheric science programs do well on the science side of things, but the forecasting
side (and especially connecting the two to make scientific forecasting possible) seems
ad hoc and idiosyncratic. Meteorology programs are not placing much emphasis on
forecasting—that is, when universities attempt to teach it at all.

We searched the web pages of major universities known for their meteorology
programs and found course listings for eleven of them. (Finding course listings is
actually a nontrivial endeavor.) A summary is presented in table 3.1. There was con-
siderable consistency in the listings of core requirements, introductory courses, and
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Table 3.1
Examples of courses listed in college- and university-level programs in atmospheric sciences or
meteorology

Prerequisite Courses Reading & Writing
Calculus and Analytic Geometry
Linear Algebra and Differential Equations
Physics
Statistics
Computer Science
Programming
General Chemistry
Remote Sensing
Science Ethics

Meteorology Introductory Courses Atmospheric Science (Introduction)
Weather Analysis and Forecasting (Introduction)
Introduction to Meteorology

Meteorology Courses Climatology/Climate Change
Microclimatology
Instrumentation
Oceanography
Air Pollution Meteorology
Atmospheric Thermodynamics
Dynamic Meteorology
Synoptic Meteorology
Mesoscale Meteorology
Physical Meteorology/Atmospheric/Cloud Physics
Atmospheric Radiation and Remote Sensing
Computational Meteorology

Forecasting-Related Courses Current Weather Discussion
Weather Forecasting
Operational Meteorology/Operational Forecasting

specialist courses, likely because the federal government has specific course requirements
for the GS-1340 Meteorology Series [https://www.opm.gov/policy-data-oversight/
classification-qualifications/general-schedule-qualification-standards/1300/
meteorology-series-1340/]. For some of the programs, the meteorology courses are
part of the departments of Earth Sciences or Environmental Sciences. In such depart-
ments, it is perhaps not surprising to see a requirement that students take a course
on Dinosaurs, Environmental Policy, or Geology, but one wonders why such broad
Environmental/Earth Sciences programs would be listed by professional meteorology
societies as being programs in meteorology.

Three of the six listed one or two courses specifically in forecasting. Two of these
were universities having a close association with an operational Weather Forecast
Office of the NWS. Typical of the listings for programs that are more clearly focused on
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meteorology was a school listing 28 courses of the kind listed in the top three rows in
table 3.1 and not a single course in forecasting at all or a program listing 32 courses and
only one specifically on forecasting. Only one program listed a course on the history of
meteorology. A number of programs list seminars or internships, which are described
in such a way as to suggest that they engage students in the forecasting process, but
this is left open as when, for example, a course is described as “Supervised practical
experience in a professional meteorological agency. Experiences may include provid-
ing weather information for radio, TV, utilities, government agencies, construction, or
agribusiness.” In contrast, one of the universities listed a course on forecasting and also
one about weather specifically for sailors and one specifically for pilots. It is fairly clear
that those would involve activities of the sort in which forecasters engage. A final note
worth mentioning is that courses on forecasting often state that physics and math are
prerequisites, but it is arguable as to the extent to which forecasters rely on those areas
of knowledge and skill to enable them to generate good forecasts.

Given this disconnect between meteorology and forecasting, it is ironic that fore-
casting contributes to meteorology and vice versa.

The Interdependence of Meteorology Education and Forecaster Training

Historically, professional forecasters had to develop both knowledge and skill in the
absence of theory. Doswell et al. argued that forecasting needed more interaction with
meteorology to advance both the science and art of forecasting (see also Ramage,
1978). Although it is arguably true that forecasters can develop and have developed
skills without the benefit of deep knowledge of meteorology, it is also true that ideas
and hypotheses coming from the experience of forecasters can inform the science of
meteorology. For example, military forecasters identified many factors for tornado for-
mation, some of which were subsequently verified by meteorological research. Other
examples include civilian forecasters identifying how northwest flow can result in
tornado outbreaks, revival of the term “derecho” to describe particularly long-lived
damaging wind events, and the conditions under which bow echoes can form from
convective storm complexes (Johns, 1993). Some of the factors in tornado formation
that the forecasters identified were also shown by meteorological research not to hold
true (e.g., dry intrusions of air in the middle levels of the atmosphere; Gilmore and
Wicker, 1998).

Not only do meteorology and forecasting inform one another, but forecasting train-
ing contributes to meteorology education. Navarra, Levin, and Navarra (1993) taught
introductory meteorology to college freshmen by abandoning the traditional lecture
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format and using a problem-based learning approach in which students worked as
teams to pursue questions specifically about weather forecasting. The method was
based on what educational psychologists call the “constructivist” theory of learn-
ing, which states that knowledge and reasoning skills are actively constructed by the
learner and cannot be passively absorbed by rote learning. As a result of problem-
based learning, students may do less well than traditionally instructed students on
such assessments as multiple-choice exams. However, they can outperform tradition-
ally instructed students in terms of realistic problem solving and data interpretation
(see Watkins, 1989).

Navarra et al. (1993) began by asking the college students, “How accurate are NWS
forecasts?” Across the semester, each team of students went on to redefine and refocus
this initial problem as a way of structuring their investigation. The Navarra, et al. dis-
cussion of this project included many details about what students did (e.g., access data
from AccuWeather®, generate maps, compare forecasts to actual weather, learn how
to use spreadsheets, etc.). The researchers’ impression was that learning proceeded in
three steps:

1. expansion of the knowledge base (i.e., learning about concepts such as the standard
error),

2. crude implementation of the knowledge base, and

3. advancement to a more sophisticated level of understanding.

Our impression is that sharing and critiquing ideas conveys a more realistic insight
into how knowledge is developed and acquired In this kind of marketplace setting,
the students learn to appreciate criticism and learn from the errors they make (Navarra
et al., 1993).

On the one hand, most jobs available to meteorologists with a bachelor’s degree
are in forecasting or broadcasting. On the other hand, the role of the university is to
educate meteorologists generally, not weather forecasters specifically (Baum, 1975).
There are many applications of meteorology, and forecasting is just one of them. As
one might expect, standardized meteorology exams focus on meteorological concepts,
not forecasting methods or methodology (see Davenport, Wohlwend, and Koehler,
2015).

Forecaster Training

Concern about the need for a workforce of highly proficient forecasters reached a flash-
point in 1981 when Doswell, Lemon, and Maddox published an article on training
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issues, and a number of other forecasters subsequently chimed in. Doswell et al. (1981)
asserted that forecasters were undertrained, the available training was outdated (i.e.,
just making guidance documents available), the training was misdirected (cookbook
exercises in the use of technology), and shift work made continuing learning nearly
impossible. Doswell et al. (1981) expressed a concern that their article would not elicit
any response, but it did. Commentators strongly agreed with the issues, problems, and
proposed solutions that Doswell et al. articulated. The schism between research and
operational forecasting was uniformly regarded as a key issue. Commentators argued
for changes in such things as workload, incentives, and the overall approach that the
NWS was taking with regard to training.

There were proposals for new structures within the NWS and new approaches to
training (see Bulletin of the American Meteorological Society, 1982, pp. 781-786; Grice,
1983). This included more requirements for training in forecasting in the academic
meteorology programs and upgrades to the National Weather Service Training Center:

If we want talented and educated people to go into operational forecasting, and those already
in forecasting to continue to advance their education, we must make forecasting expertise and
experience a requirement for advancement. (Ellsaesser, 1982, p. 782)

The introduction of the PROFS workstation concept and the NEXRAD radar, the
availability of new data types, and new information-processing technologies (see
chapter 2) resulted in considerable concern about the forecasting workforce. Signifi-
cant changes were needed in meteorological education, including a concern for how
to best train severe storm forecasters, how to use the new radars, and how to use the
computational models (Fritsch, 1992). As new technologies and methods come along,
there became a need for training to higher levels of technical proficiency (Hallett,
Wetzel, and Rutledge, 1993; Rothfusz et al., 1992). As the WFO system was built up,
there was a need for more and more highly trained forecasters. J. Michael Fritsch
(1992) said that this “presents the threat of a shakeout in the academic community”
(p. 1846).

There are now opportunities for “overall” forecasting training in case study work-
shops held at conferences of the American Meteorological Society (AMS) and the
National Weather Association (NWA). New developments have also mandated a
lengthening of the period of education and the creation of new degrees in applied
meteorology.

The NWS designates certain individuals at its WFOs and national centers as sci-
ence officers. These individuals are responsible for training forecasters at local forecast
offices, regional centers, and national centers. They spend at least one third of their
time developing, delivering, and facilitating staff training that is not already offered
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through the training branches of the NWS or through the COMET program (Coop-
erative Program for Operational Meteorological Education and Training). Much of the
training concerns the use of individual tools and products, such as how to use the
NEXRAD radar.

The NWS’s Instruction 20-103 (National Weather Service, 2002) required new
interns to complete a Forecaster Development Course [see http://www.meted.ucar.edu/
nwp/course/]. The training covers: (1) the NWS organization, its structure, personnel
and administration policies and various communication tools; (2) operational instru-
mentation, data collection, and management; (3) “Numerical Weather Prediction”
Software for issuing forecasts, troubleshooting, and so on; and (4) customer service
and outreach, computer security, use of email, and so on. The units appear to neglect
how to apply this important knowledge about technology to the actual creation of a
forecast.

The Forecaster Development Program (National Weather Service Training Center,
2006) focuses on the computational elements required for the task of forecasting, espe-
cially the computer models and particular software tools available, rather than the fore-
casting task itself. In the material on forecasting, there is only one subsection on the
forecasting process. The remainder covers atmospheric dynamics, with a heavy empha-
sis on numerical weather prediction rules and how to use a software tool that defaults
to the computer model’s forecast. The forecasting process is conceived superficially,
in terms of a “funnel” in which the forecaster’s understanding moves from the “big
picture” of longer term and hemispherical spacetime scales down to shorter-term local
scales (more of this description of the forecasting process appears in chapter 4). More
positively, the National Weather Service’s Radar Operations and the Advance Warning
Operations Courses do integrate knowledge with hands-on simulations and problem-
solving activities for forecasting on very short time scales.

At each of the 2004 and 2005 annual meetings of the AMS, a forum of approximately
200 members representing the international meteorological community concluded
that the changing role of humans in the forecast process made ongoing education and
training imperative (Stuart et al., 2006; see also Stuart et al., 2007). Entry-level forecast-
ers should have some familiarity with the forecast process and mechanics of producing
forecasts for various sectors of the field. Career-long education should include two ele-
ments: the science—including diagnosis and prognosis—and operations, or mechani-
cal production of forecasts elements of the job. As duties shift, forecasters will also need
strong communication skills as they become key in the dissemination of forecasts to
anyone who might benefit from forecast information.

These training issues and concerns are not limited to professional venues. In their
observations of forecasting operations in the U.S. Air Force (as well as the NWS WEFOs),
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Pliske et al. (1997, 2004) found that training specifically for the forecasting task was
deficient. The near absence of formal training on the forecasting task leaves profes-
sionals to self-direct the majority of their learning and to learn by doing their jobs.
Pliske et al. (1997, 2004) recommended that there should be more “embedded train-
ing.” This notion emerged clearly in a recent ethnographic study of how people come
to be forecasters.

An Ethnographic Study of How People Get to Be Forecasters

LaDue (2011) interviewed a number of forecasters at various stages in their careers. She
asked how they developed their forecasting skills and the reasoning strategies they use.
She asked about their experience at being mentored and how they self-directed their
learning as they navigated their careers. The fundamental question, “How do meteo-
rologists learn to forecast?”, was broken down into the following:

- What initiates efforts involved in learning to forecast?

- Why do forecasters make the efforts they do to learn to forecast?

- How do forecasters go about choosing resources and forming strategies to learn how
to forecast?

- What is the role of social interaction in learning to forecast?

- What is the role of context in learning to forecast?

Eleven professional forecasters were identified through personal networks. Seven
of the forecasters were with the NWS. They had between 1 and 18 years of experi-
ence. Four of the participants worked in the private sector. They had between 1 and 8
years of experience. One public sector forecaster did specialty forecasting for a small
and specific geographic area in the central plains; another did specialty forecasting at
a national center. The others forecasted all types of weather for forecast offices in the
western, central, southwestern, and eastern United States. One participant had first
worked in the private sector for three years before moving to the public sector, and
another had worked in a different profession before returning to a childhood interest
to become a forecaster. The private sector forecasters did seasonal or specialized fore-
casting for specific clients.

Three of the participants were women, and they had only four or fewer years of expe-
rience. As is typical for a physical science, women and racial/ethnic minorities remain
underrepresented in meteorology as compared to the general population. Where they
are engaged as forecasters, they may advance quickly out of forecast positions. Forecast-
ing usually involves shift work, resulting in a tendency for women to move into other
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positions when they start families (this is one of many manifestations of the need for
reconstruction of our nation’s science, technology, engineering, and math fields; see
http://www.ed.gov/stem).

A total of 101 stories were provided that had sufficient detail to identify how and why
learning occurs. The stories the participants told included learning events prompted by
curiosity, changes in technology, changes in organizational structure, a request to give
a talk to a particular audience, and personal observations of atmospheric anomalies.
Other stories were events that would arise during a critical incident, such as investigat-
ing some apparent inconsistencies of information during weather events, unexpected
damage from a storm that did not appear to be severe, or large errors in forecasted
temperature.

The interview transcripts were analyzed using methods described in the literature on
qualitative data analysis (i.e., Charmaz, 2006; Corbin and Strauss, 2008; Lincoln and
Guba, 1985; Ryan and Bernard, 2000). This included the construction of conceptual
models of learning and cognitive processes. Quality of the data and analysis was trian-
gulated through discussion with three Science and Operations Officers (the position
responsible for onsite training in an NWS forecast office), forecasters who were not
participants, and an individual involved in professional education of forecasters in a
private sector company. (In the following discussion, we use pseudonyms.)

The Drive to Be a Weather Forecaster Often Kick-Starts in Childhood

Five of the eleven interviewees had a strong interest in weather before majoring in
meteorology in college; four others had an interest in weather and science more gen-
erally. One interviewee said he had been interested in storms since he was a “baby”
and related stories of pursuing weather topics throughout his school years. Child-
hood experiences included cloud watching, looking at weather online, participating in
weather forecasting discussion boards, getting a weather-related job at a local science
center, reading books about clouds and weather, and actively attempting to forecast
the weather.

Six interviewees told a number of stories of exciting weather experiences, at observ-
ing the same types of clouds and storms they had read about. One forecaster said he
had visited his grandfather’s farm daily to see what the barometer was doing. One
participant retained strong memories of weather from his childhood. His family had
moved often, giving him wide-ranging experiences from blizzards to tropical storms
and frequent summer thunderstorms.

Four participants described a childhood interest to a lesser extent. However, they
also engaged in activities based on their interest in weather: weather projects with 4-H
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Box 3.1
Case Studies in Childhood Experiences

Cassie said: “Well, you know, me being a huge weather dork, when we’d have pretty bad
weather I'd go outside and I'd look at the clouds.” Tyler’s kindergarten teacher told his par-
ents she thought he would be a meteorologist after he routinely cut the forecast from the
paper and took it to class. He said, “I'm being honest here, for as long as I can remember,
I've always loved the weather. So me getting into meteorology was just a natural thing.”
Mike said he had been interested in storms as long as he could remember. "It probably gave
somebody a clue that I was always doing my science fair projects on tornadoes every year.”
Lisa thought she was around 9 or 10 when she saw a rare tornado for her area: “I was always
looking at clouds and telling myself that those types of clouds brought rain, this type of
cloud formation was rain. And I knew, of course, what tornadoes and stuff looked like. I was
always reading stuff about the weather, about tornadoes. ... There was actually a tornado
that touched down [nearby] back then. And I saw this. I was sitting there in my front yard
and I climbed up the tree and saw the great big supercell out there, and you could actually
see this thing rotating. You could see the rotation and everything in it, and I said, there’s
got to be a tornado close by! ... And sure enough, they had put out a tornado [warning]
..." Cassie felt a thrill when watching weather. “I'm one of those,” she laughed. Mike and
Tyler had intense “passion” for weather. Both said they had been interested “for as long as
[they] could remember.”

clubs, reading books about weather, watching the movie Twister, and noticing what
the weather was like on days with good surf. Only one forecaster stated that he did not
have a childhood interest in weather.

Early experiences with weather allow forecasters to do local, near-term forecasts.
Stories told by the younger forecasters comprised most of the instances of this, in part,
because interview questions focused on recent learning.

Forecasters Learn How to Forecast on the Job

Human factors psychologists have noted that significant learning occurs on-the-job
in many professional domains (e.g., Derouin, Parrish, and Salas, 2005). This is true for
the domain of weather forecasting. Writing in 1994, Australian meteorologist Phil Tar-
gett said, “While the technical aspects and theory of meteorology are regimented and
taught in a formal way, the actual skill of forecasting is acquired by on-the-job train-
ing while working with experienced forecasters who pass on their practical knowledge
and experience” (p. 48). LaDue’s interviews revealed a number of major conditions for
learning and means by which learning is conducted. Perhaps the most surprising thing
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is that forecasters actually have to teach themselves how to forecast. Young forecasters
who were interviewed said they avidly read a routine product issued by the NWS called
an Area Forecast Discussion, as well as Internet weather discussion boards. Forecasters
do get training, but it is not in forecasting. Some training modules that NWS forecast-
ers have to take emphasize a specific level of detail and do not apply generally; other
modules reiterate only the simplest, most basic concepts.

As we mentioned earlier, many forecasters grow up doing their own forecasting and
participating in forecasting contests. Although forecasters have professors who deliber-
ately integrate forecasting for the local area into courses so that meteorology students
can experience first-hand the weather that they attempt to forecast, many forecasters
never have the opportunity to take a forecasting course during formal schooling.

Graduate-level courses in synoptic meteorology can build connections between the-
ory and weather, resulting in a deep knowledge base that forecasters can use to forecast,
but forecasters have to find those connections on their own. An example of this appar-
ent disconnect between meteorological knowledge and forecasting skill was provided
by one interviewee forecaster. During his childhood, he once recorded barometer read-
ings that seemed anomalous and that he could not explain based on his awareness of
the major forces that were determining his regional weather at the time. Years later, a
professor in one of his meteorology courses mentioned that a distant tropical cyclone
can generate pressure wells that move well ahead of its location and generate pressure
waves higher than otherwise would be expected. This disconnect means double trouble
for budding forecasters: Not only do they have to learn how to create good forecasts,
but they have to discover connections between meteorological science and the weather
phenomena that are the focus of forecasts. All of the interviewee forecasters told sto-
ries of either stumbling onto such connections or having to actively search for them
in order to explain what happened to “bust” a forecast, or in other words, to get the
forecast wrong.

Individuals who are new to the profession often find themselves in offices that are
short staffed, leaving little time to work through training resources for forecasters.

Box 3.2
Case Study in Learning on the Job

Lisa felt that her schooling had left her ill prepared to forecast. She “met all the qualifica-
tions [to be a forecaster],” but, she explained, her school did not “have people instruct you
and show you the different features and have people instruct and show you the different
things that are happening that you’ve learned [about].”
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Some but not all private sector employers have training programs and focused mentor-
ing. Of the eleven interviewees, only one reported feeling somewhat prepared for the
job, explaining that his college was oriented toward forecasting and had integrated
forecasting exercises into several courses. The participants all spoke of the steep, initial
learning curve that forecasters encounter. Younger forecasters sometimes felt they had
to create strategies to learn the job and understand the science, at times without help.
One of the private sector forecasters worked at a company that had no training pro-
gram. After a harsh six-month review, he formed a strategy of working through training
modules and reading other materials on his own time.

To generalize, the first ten years are a struggle. Given that forecasters have to learn
how to forecast even while in the role of “newbie” forecaster, it is not until around
three years into the job where they get past the “learning hump”—acquiring the major-
ity of the basic knowledge and skills needed to reliably issue good forecasts.

The 2003 report of the National Academy of Sciences Panel on the Road Map for
the Future of the National Weather Service (Gordon et al., 2003) was a major review
of an NWS continuing modernization and restructuring effort. In discussing training,
the Panel acknowledged that on-the-job training was crucial, taking the new forecaster
beyond the training received at the National Training Center, the NEXRAD Opera-
tional Support Facility, and/or the COMET program:

On-the-job training, which takes place informally all the time, will continue to be an important
part of the continuing education and training of National Weather Service staff ... a more formal
journeyman/apprentice model would have advantages for learning and would also recognize the
contributions of the trainer as well as the accomplishments of the trainee. (p. 60)

One of the Most Important Conditions for Learning Is Exposure to Weather

Science officers at Weather Forecast Offices are responsible for training forecasters at
local forecast offices. One of the science officers interviewed by LaDue pointed out
that forecasters encounter difficulty when moving from one location to another. They
have to change their mindset—expecting one type of weather based on their previ-
ous regional/climatological experience. Over time, they discover different conditions
and seasonal trends. Forecasters are best able to become good at forecasting types of
weather they see frequently. Thus, experience with weather sometimes reveals learn-
ing needs, just as lack of experience with weather may hide learning needs. Eight of
the participants had vivid stories where personal experiences with weather (such as
the forecasting contests) allowed them to learn faster or more deeply. Their profes-
sors focused contests on local weather so students would both forecast and experi-
ence resulting weather first-hand. Two of the interviewees said that they forecasted
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outside their schooling for their own storm chases, leading to a daylong engagement
and immersion in the weather they were attempting to forecast.

Forecasters Learn How to Forecast by Mentoring and Collaborative Learning
Mentoring is also significant for learning. Mentoring activity has been observed to
take place in every study in which cognitive task analyses have been conducted in
weather forecasting offices (see, e.g., Klinger, Hahn, and Rall, 2007). Learning happens
faster when experienced forecasters share their knowledge. A few of the forecasters that
LaDue interviewed reported that experienced forecasters had sought them out and ini-
tiated a mentoring effort. Forecasters routinely help each other catch up after they had
a few days off, and actively share resources they have discovered helped them forecast.
All public sector forecasters were involved in teaching each other, either from their job
specialty or assigned focal point duties.

The science officer we mentioned previously had a long and distinguished career
engaged in mentoring with a considerable number of junior forecasters, and this gave
him a special perspective. He knew that a shift in mindset was particularly important,
and he would choose cases for training that forced forecasters to work through such
situations. He saw the differing approaches to forecasting of forecasters as an asset dur-
ing training. He valued that they learned from each other during training simulations.
He also mentioned that regardless of how a forecaster considered data, there were times
when they had to return to—or discover—an empirical basis for the weather in a par-
ticular region or at a particular time of day. He had led some of these studies himself,
motivated by a deep desire to improve the state of art.

Forecasters are often mentored because they have been hired to replace someone
who was retiring, and that person focuses attention during his last few months on
helping the replacement learn the job. Forecasters are also routinely mentored by lis-
tening to the daily weather briefings given by the lead or senior forecasters in their
office.

A number of the interviewees mentioned having benefited from multiple mentors.
Mentoring resulted in a deeper conceptual understanding of weather processes and an
ability to more quickly focus on the most important data and processes for the particu-
lar situation. Mentoring experiences are especially crucial for forecasters who are in the
early career stage:

I can expect—every time I'm on shift with this person—that I'm gonna learn a whole bunch of

new things. And it’s awesome! The older forecasters know things, they have seen things, they
recognize things a lot quicker than you do.
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One of the interviewee science officers asked better forecasters to mentor new
interns and encouraged all forecasters to fulfill a mentoring role. The science officer
facilitated each forecaster’s growth into a mentoring role. He said that expertise at fore-
casting and skill at mentoring were to be grown, managed, and seen as a resource. Some
forecasters are intrinsically and highly motivated to train others. They go out of their
way to develop training materials, document cases of challenging forecast situations,
and share them with their juniors. “To me it’s just important to pass it on ... of mentor-
ing someone else. But it’s something I learned the same way.” But not all forecasters
are good mentors. One interviewee forecaster remembered how he had once wanted
to improve his ability to forecast snow and was frustrated that another forecaster could
not articulate what he was thinking as he looked at several parameters and decided on a
forecast snow amount. Three forecasters told stories of weather events they or someone
in their office was unable to explain, leaving them with an implausible, weak expla-
nation, likely misapplied, that they had heard somewhere before. Complementary to
this is the fact that mentors (like exceptional teachers) learn from teaching. Forecasters
began engaging in peer learning as they became increasingly competent. Two of the
participants said that they found the shift to teaching younger forecasters to be a mile-
stone in their own competence.

Learning Happens Faster When Forecasters Engage in Collaborative Analysis

Weather is complex, so being exposed to others’ thinking was enormously helpful in
learning to forecast. When forecasters are able to interact with peers and experts, they
figure things out faster. For example, the forecasters spoke of learning through the daily
NWS Area Forecast Discussion. The three forecasters who spoke of their learning as if it
were a solo endeavor still had strong social aspects to their learning; they just tended
to speak of their accomplishments in a personal rather than a collective way. The social
aspects were revealed through follow-up questions that probed their stories.

As the case for experts in all professional domains, forecasters learn from their mis-
takes. Every participant mentioned some type of review to figure out what they had
missed when their forecast turned out to be deficient. It is not always easy to identify
why a forecast was deficient and then determine a plausible explanation for why the
busted forecast made sense at the time. Even with the help of experienced colleagues,
forecasters cannot always figure out what caused an event, and certain forecasting situ-
ations remain difficult because of poor data.

Forecasters told of instances where the review failed to resolve the cause of an event.
Some of these stories were from younger forecasters, and in “busted forecast” situations
they would often take a passive role in following the efforts of a more experienced
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forecaster who did the review. The more experienced they became, however, the more
likely they were to successfully identify the cause of their missed forecast. They could
reason through what they knew, key in on the most important data and concepts, and
figure out the causal mechanism to explain an event. They would act on their new-
found knowledge, for example, by displaying data in a new way after figuring out what
had not been considered in a previous forecast.

Reviews could become quite extensive for middle career forecasters who were dis-
satisfied with the state of the art. Mysteries were a seed for major, longer-term learn-
ing efforts to advance the state of the science. For example, when thinking things
through did not come to a resolution, a strategy was to take notes on what they did
so that they might later determine the efficacy of various forecast strategies. Most par-
ticipants’ stories involved difficulties rather than ease in connecting pieces of knowl-
edge. Connections were occasionally easy but more frequently needed facilitation and
effort.

Not Being Exposed to the Connections between Meteorological Knowledge and
Forecasting Reasoning Can be Devastating in Its Implications

One forecaster said she became desperate to learn when she started her career. She
described asking every forecaster in her office how they forecasted various things. The
other forecasters were shy and reluctant, but they would share, prefacing their help
with, “Well, I do it this way, because it is the fastest” or “I do it this way because it
seems to work the best.” Apparently there was no accompanying explanation of the
underlying reasoning. Seeing connections allows for the beginnings of true forecast-
ing skill, when forecasters realize the meaningful relations between observations and
future events.

Over Time, Forecasters Develop a Sense of Professional Identity, and This Is Very
Important to Them

Although it seems easy to label someone as a weather geek, and for weather geeks to
label themselves as such, this is actually the start of the development of a sense of
professional identity, years before actual entry into the profession. One of the first and
most important things is “affirmation”—some sort of signal from others that the stu-
dent’s interest in weather suggests a life path, a path that is a good one. Interviewees
reported that classmates started asking them what the next day’s weather would be.
Most of the interviewees were affirmed clearly and readily. They said that how others
reacted to them in their childhood and early adulthood helped shape their identity
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Box 3.3
Case Studies in the Development of a Sense of Professional Identity

Mike and Forest had nearly identical statements, with Mike saying, “Well, if I'm going to
answer questions [about what the weather will be], I better actually try to figure out how
to forecast!” Tyler got a high school job with a local science center and began forecast-
ing. His boss noted his interest and skill and let him update the center’s website forecasts.
With Cassie, interest was more than helping her friend. For Cassie, her role became a deep
and meaningful part of a friendship: “My friend was so scared. That I just took it upon
me to try to calm her fears. ... I felt a strong urge to comfort her in whatever way I could.
... I guess that kind of fueled my interest ... in something I wanted to learn more about
[anyway].” Cassie continues in this role today: “Even into our young adult lives, she’s still
looking for answers from me. It’s kind of fun.” Janet’s friends liked her career choice and
thought she should “be on TV.” She said to them it was the “holy grail” for a meteorolo-
gist and that she appreciated their support. Travis said his parents became excited about
his career choice as they learned more about it. Early on the job, Forest, Tyler, Henry,
and Shawn benefited from what they saw as personal, high-quality mentoring. Lisa and
Cassie described older forecasters responding to their questions and sometimes taking
initiative to share explanations and insights with them. Mike said his lack of success in
storm chasing during college became a joke among friends, leading to his current conser-
vative forecasting style: He had seen—first-hand—dozens of ways that weather could fail
to come together to produce tornadoes. A few participants spoke of affirmation regarding
their developing skill. Jordan reported he could often send a specialty forecast without
it being checked. Janet had gotten a positive reaction from a local business college, who
says her interests in combining meteorology with a business degree are in high demand
at the moment.

and resolve. Their interest was persistent, and this was noticed by those around them.
Teachers, parents, and friends began calling them the weatherman or weathergirl and
asking what the weather was going to be like on a given day. That affirmation by others
began a sense of identity, and they were pleased by this.

Two of the 11 interviewees maintained their resolve despite affirmation being mis-
placed or late in coming (e.g., persisting through a college curriculum in meteorology
designed to “weed out” those with poor math skills). All 11 interviewees told stories
of how interactions with people who were interested in forecasting helped them see
forecasting as a profession they wanted to enter. Through interactions with others,
forecasters learned what others value and need. As children, these forecasters wanted
to help childhood friends who were interested in or afraid of weather.
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Early in Their Career, Forecasters Become Mindful of What Is Most Important to
Their Customers

Nine of the 11 interviewees spoke about interactions they or others in their office had
had with emergency managers, pilots, departments of transportation, native peoples
on tribal lands, and cooperative observers about their need to better understand the
impact of weather. Interactions with customers or the beneficiaries of weather forecasts
helped them understand the value of their forecasts, which was particularly motivating
for learning. Forecasters thrive on it, often considering pursuing advanced degrees in
business or economics to better understand customer’s needs.

Overall, knowledge of customers’ weather information needs is particularly motivat-
ing, although of course it can sometimes be a background consideration in the motiva-
tion of some forecasters. That being said, all of the interviewees spoke about their work
as if it were part of who they were; they have a strong, encompassing sense of identity.
Expressions of this sense of identify ranged from self-identifying as being “really” a
researcher to self-identifying as a “huge weather dork.” Those with the strongest inter-
ests refer back to their childhood, as discussed earlier. (All of the interviewees of course
had outside interests, but the deliberate pursuit of balance, or the desire to achieve a
balance, was only mentioned by one interviewee.)

Forecasters Progressively Deepen Their Understanding

Every interviewee provided at least one example of deepening their understanding.
Deepening begins with the childhood experiences, realizing simple causal connections
between observations and things that had been learned about weather concepts and
dynamics. Once working in a professional setting, the deepening of understanding
takes different forms, and not just deepening in the sense of enriching one’s knowledge
about weather. Forecasters tell stories of having to learn major constructs, new predic-
tive parameters, new forecasting algorithms, phenomena that may be generally known
but that had not been taught in school, and so forth. Forecasters always find them-
selves feeling like novices when they move to some new region and have to learn about
new climate and weather tendencies. There is often a new surprise, a phenomenon
they have never heard of and do not understand, or some new forecasting strategy or
method comes along. Sometimes it is just the interactions between the atmosphere and
the local geography that create new weather and climate scenarios.

After just one to a few years of experience in professional forecasting, once com-
petence has been achieved for common processes and weather types, the forecaster’s
learning moments occur when something unexpected happens. The forecaster can rec-
ognize precursors to common phenomena that have major impacts on the weather in
areas forecasted, and learning shifts to being caused by surprise when a forecast goes
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Box 3.4
An Example of the Deepening of Understanding

Red sky at night, sailor’s delight. Red sky in morning, sailor’s warning. This simple association
is based on the general tendency for northern hemisphere mid-latitude weather systems to
move from west to east. High moisture content in the air, due to an incoming storm system
(A), can cause a red sky in the morning (B). In contrast, the dust and clouds of departing
weather systems can cause a red sunset. This analogy fails rather dramatically, even at mid-
latitudes, if the storm system is a westward-moving hurricane.

The magnitude of the pressure gradient at 850 millibars is a good proxy for forecasting
strong and gusty surface winds. The stronger the pressure gradient (A), the stronger and/
or gustier the winds at the surface (B) would be. This association sometimes works, and
sometimes it fails.

Box 3.5
Deepening of Understanding as a Result of Surprise

Forest initially had large forecast errors in high-temperature forecasts along a coastal area
where marine fog events occurred. His errors became smaller as he learned some fundamen-
tal aspects of fog formation, but he still had to learn and understand the nuances of how
fog dissipates. In one example, he mentioned that clouds did not clear completely, moder-
ating the high temperature below what it would have been had the fog completely cleared.
“Nine out of ten times it’s gonna verify. There’s that one out of ten times when it doesn't.
... That’s when you have to go back and look at all the data and try to figure out what hap-
pened. That’s when you learn and improve as a forecaster.” Cassie described beginning to
learn the nuances of strong winds. As she was beginning to understand how to forecast
them, she came across an instance where the winds were not going to be strong, despite the
pattern seeming similar to her. Another forecaster explained the nuance to her to help her
understand. Raymond and Shawn both missed forecasting severe events because of subtle
changes in instability. Travis learned that instability had now become a nuance, whereas in
his first forecasting location essentially any instability led to severe weather.

wrong. All forecasters enter this phase of learning mainly from surprises. The learning
of nuances can be rapid at this point, taking one or just a few experiences and rarely
requires experience across more than one full seasonal cycle.

By middle career, forecasters are not often surprised at how the weather unfolds
after making a forecast, and stories of forecasting challenges tend to focus on instances
where they were dissatisfied with the state-of-art. Forecasters want to improve the data
and tools, but not all forecasters become strivers, individuals who seek to advance the
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state-of-the-art. The extent to which they engaged in such activities might be depen-
dent on the collusion between a strong sense of identity with social affirmation (more
is said on this topic of “forecasting styles” in chapter 7). Whatever proficiency level
they are at, the realization that they lack forecasting skill usually causes forecasters to
review an event to try to figure out why the weather evolved differently than they had
forecasted. The extent to which they engage in such investigations varies primarily by
how much time they have and how difficult it is to figure out what went wrong. Time
is a challenge to learning for all forecasters.

To summarize, the following core phenomena interact and feed into one another
over the course of development, education, and training:

- Experiencing the weather,
- Seeing connections,

Receiving affirmation by others,
- Becoming intrinsically motivated to learn how to forecast,
- Developing a sense of role or identity,

Self-learning of knowledge and skill on the job,

Creating and applying learning strategies on the job, and

Benefiting from mentoring.

As child “weather geeks,” budding forecasters show the features of novices that have
been seen in studies of other professional domains: Their understandings are simple
associations and causal connections, and their knowledge is limited. The culmina-
tion of the experiences can be genuine expertise: the ability to understand weather in
terms of multiple and complex interactions, the ability to adapt to circumstances and
develop new strategies and methods for forecasting. These are all defining features of
expertise (see Hoffman, 1998; Simon, 1973).

Step 1: Recognition of an Inability to Forecast. Young forecasters begin with a general
inability to forecast, as do more experienced forecasters who, after moving to a new
region, are dealing with phenomena they had not forecasted or experienced before.
The realization that they did not know something could trigger learning regardless of
their time-in-service or experience with a similar phenomenon.

Step 2. Receiving Support. Following recognition of an inability to forecast, strong sup-
port from experienced forecasters is crucial to help them learn. This results in knowledge
of weather and the appropriate processes to access and use that knowledge effectively
— if the experienced forecasters have useful knowledge structures. This learning path
is relatively fast. Even brief input from a veteran can trigger fast learning of some unfa-
miliar phenomenon; forecasters at this stage often commented that they became aware
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Box 3.6
Case Studies in Affirmation

Fortunately, most forecasters find help readily available. The forecaster who needs to learn
something new has to sometimes actively seek help and receive affirmation that reaching
out for help is acceptable. One senior older forecaster reportedly told a junior forecaster,
“You're seeing something, you're picking it up but you're not exactly clear on what it is. Let
me elaborate a little bit and tell you what is causing this.” This forecaster knew that no one
coming into their office forecasted precipitation correctly in certain circumstances because
it was a local effect of the geography. In saying this to the junior forecaster, the senior
thereby affirmed her, making it okay that there was something she did not understand but
needed to learn. She was relieved that someone finally understood how she had been feel-
ing. Travis did not speak of having a mentor, and the science officer in his current office
was initially unavailable. Travis described asking questions of older forecasters but none of
them initiating explanations. None of his stories described particularly complex learning
events or deep engagement in thinking about weather processes. It is perhaps not surpris-
ing that Travis did not seem to have a strong sense of professional identity.

that “learning got a lot faster.” Stories were told of significant learning moments that
took just minutes.

It is particularly challenging to young forecasters when others could not or did
not help them learn. The knowledge needed to forecast the weather is extensive and
complicated. It is difficult to learn without someone helping you learn how to think
through complex processes. A few forecasters told of their feeling of desperation of not
having a mentor and having to indiscriminately shadow experienced forecasters to
absorb what they could because their reaching out did not seem welcomed. Sometimes
support is not readily available. Interviewees described this as their most challeng-
ing yet significant kind of learning experience because the forecaster had to create a
learning strategy; resourcefulness is an apparently solo effort. Younger forecasters cre-
ate strategies to learn how to link the science to the forecast and to do the job, whereas
experienced forecasters create strategies to build on their ability to resolve local or
situation-specific forecasting challenges. Experienced forecasters also sought to extend
the science by promoting research, reviewing scientific literature, publishing reports or
articles, and/or attending scientific conferences to share their research.

Forecasters with the strongest senses of professional identity not only persisted
through these challenges but also created effective learning strategies. Although their
learning was primarily self-directed, they eventually needed to rely on others to some
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Box 3.7
Case Studies in Self-Directed Learning

Raymond was interested severe weather, a particularly difficult forecast challenge for his
region due in part to poor data. Forecasting severe weather in his area was also difficult
because low population density may, as he was discovering, mask the occurrence of tor-
nadoes. Although much of the effort was his own, he had spoken with forestry officials to
learn about instances of tree damage. He was in the process of figuring out how to better
forecast and identify tornado occurrences in his area based on tree data. Henry told the
story of a forecast problem: “I started thinking something was going on in the boundary
layer. I'm no expert ... but something was going on there. So we [put our observations out
there] ... in hopes that someone would grab ahold of that and ... try to figure it out. ...
That'’s an example of a case where I didn’t do that project myself because I didn’t have that
in my area of expertise. ... And that happens fairly often.”

degree. Sometimes they had to almost force someone else to help them figure it out,
see connections, and learn. Sometimes episodes that would seem to trigger self-directed
learning ended with no learning. All forecasters in LaDue’s study, regardless of how
strongly they identified as a forecaster, were bothered by these occurrences. Those with
the strongest identities took the most extensive actions to learn.

LaDue’s research sets the stage for further work on important questions. For exam-
ple, the interviewees did not convey any stories where they later realized something
someone taught them was incorrect or unproductive. A more systematic or controlled
study would be needed to investigate this. An additional question has to do with men-
toring. Although mentoring is seen as necessary, there is no scientific base or estab-
lished methodology for determining how to identify individuals who might become
good mentors. Experienced mentors provide insight into the mentoring process and
its value, but here too there is a need for follow-on research that is more systematic or
controlled.

New Learning Venues

The concern has been raised that any four-year education program could not possibly
allot enough time for students to really learn about new technology. There has been a
shift from traditional training (emphasis on forecasting based on maps and charts) to
a new education model that adds course work on remote sensing, satellite image inter-
pretation, the use of Doppler radar, and the interpretation of computer model outputs
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(see Fritsch, 1992). In addition, the process for involving meteorology students in field
weather observation experiments was being formalized and expanded (see Mullendore,
Tilley, and Carey, 2013.

Computer-assisted learning and distance learning have become a major methodol-
ogy in meteorology education and forecaster training, from the college to the profes-
sional levels. For example, EUROMET is a project funded by 23 countries to provide
network-based education and training (Gimeno and Garcia, 1998). In the United States,
it became clear that training of professional forecasters was becoming more crucial and
yet travel was becoming more expensive (Fritsch, 1992). Thus, the NWS established a
training division and programs such as the Virtual Institute for Satellite Integration
Training (VISIT) (Mostek et al., 2004). The Cooperative Program for Operational Meteo-
rological Education and Training (COMET) began in 1989 as part of the modernization
of the NWS.

COMET

COMET was implemented to improve meteorological education through the use of
new workstation technology, the integration of new data types, and attempts to gener-
ate displays that graphically and symbolically depict atmospheric dynamics in such
a way as to represent conceptual models of the atmosphere (e.g., three-dimensional
models of the structure of clouds, based on radar data) (Johnson and Spayd, 1996;
Spangler et al., 1994; Wash et al., 1992). Goals of COMET included:

. Training forecasters in the use of new systems (such as NEXRAD) and interpreta-
tion of images from new sensor systems (i.e., the GOES Advanced High Resolution
Radiometer);

- Serving as a clearing house to provide new training data types/sets and training
products to the educational community for use in courses on synoptic and mesoscale
meteorology;

- Providing new training data types/sets and training products to the NWS and the
Naval Meteorology and Oceanography Command for in-residence training; and

- Laying the foundations for a weather forecasting infrastructure, whereby there can
be greater interaction among the research, academic, and forecasting communities and
accelerated transfer of research results into operational forecasting.

Given these multiple objectives, the COMET program has funded dozens of fore-
casting research and development projects: Cyclogenesis in the Gulf of Mexico, mea-
surement of rainfall rate using Doppler radar, prediction of the movement of volcanic
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ash clouds, development of a geographic information system that can be integrated
with meteorological data, and so on. COMET has dozens of training modules available
online. They are used in modules that are included in the National Weather Service’s
Forecaster Development Course (more on this below), and these are updated every few
years.

Hints at the importance of cognitive factors in forecasting appeared in recommen-
dations from the first wave of COMET efforts: The then-new workstations needed to be
accompanied by better documentation, there was a need for a means to integrate satel-
lite imagery with various data fields, and there was an outstanding need to integrate all
the diverse software systems being developed (Wash et al., 1992, Table 1). (For a review
of the first decade of the COMET efforts, see Johnson and Spayd, 1996.)

The COMET training system includes a great many case study data sets for multi-
media distance learning (e.g., training modules on Doppler radar interpretation and
the initiation of convection) (Serafin, MacDonald, and Gall, 2002). The emphasis is on
new software for visualization, interactive computing, and networking. The data sets
integrate surface, upper air, satellite, and radar data. New visualization tools include
the graphical comparison of various computer model outputs, depiction of temporal
changes in surface data fields, analysis of air parcel trajectories, navigation of historical
data sets, time sequences of radar data, depiction of isentropic vorticity fields, and so
on (see Spangler et al. [1994] for examples). The COMET project has also generated a
number of striking animations, much of it now web-based in a virtual classtoom [see
http://www.comet.ucar.edu and https://www.youtube.com/user/cometmeted].

Discussions of various COMET projects and programs include testaments to their
success, that one or another course was “rigorous” (Wash et al., 1992), or that a new dis-
play “improved student understanding of atmospheric dynamics” (Wash et al., 1992,
p. 1446).

A result that seems to percolate up from the COMET programs is the value of using
numerous case studies (numbering in the dozens) as the foundational exercise in
courses. This finding fits with those of Navarra et al. (1993), described earlier. In addi-
tion, a benefit is seen in having the case studies presented in a format that mirrors that
of operational forecasting. Finally, value is seen in formatting the learning modules in
such a way as to promote the:

interpretation of patterns associated with fronts, convergence and divergence, etc. ... Practice
cases contain video-based discussions in which the content experts address important points
about the case. Lesson exercises focus on ... quickly recognizing significant patterns that might
be observed on Doppler radar (such as veering or backing winds with height). These exercises re-
quire the learner to interact with the system by responding to questions about concepts, match-
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ing correct wind speeds with selected points on a velocity image, identifying events such as
warm air advection, etc. ... Learners utilize a number of topic-specific conceptual models and
tutorials that allow them to build their knowledge and skill levels. Content experts ask questions,
give hints that guide the learners to the correct answer, provide expert answers, and explain
techniques and concepts about various features and processes ... [it] challenges the learners’ abil-
ity to correctly and rapidly identify convergence boundaries. (p. 1253.

These conclusions are reinforced by trainees’ postinstruction evaluations and dove-
tail with ideas confirmed in other research on instructional design. Indeed, fundamen-
tal to our understanding of expertise, in general, is that the higher levels of proficiency
are achieved only after a great deal of case-based practice (Ericsson et al., 2006).

INNOVATIVE WEATHER

The Atmospheric Sciences program at the University of Wisconsin at Milwaukee has
a forecasting class, and its students are involved in the national forecasting contest.
This continued for about 10 years until a need was perceived to connect strong stu-
dent interest in forecasting, their need to earn income, and weather decision sup-
port forecast services in the community. The result (in 2007) was a service known as
INNOVATIVE WEATHER, and it does all of the above [www.innovativeweather.com].
INNOVATIVE WEATHER engages high school students and Atmospheric Science clubs
through talks, conferences, storm chasing, weekly forecast discussions, and forecasting
competitions. It has a pre-internship program for high schoolers and an internship
program for college students, through which students can develop skills in forecasting
while still satisfying the requirements for a degree in atmospheric science. Interns have
to do actual forecasting “shift work,” thereby serving as a window on the day-to-day
work of professional forecasters. This weather decision support service is provided to
paying community clients across a wide variety of weather-sensitive sectors, including
energy, transportation, and entertainment. In addition, there is another internship for
students interested in broadcast forecasting. In all these internship programs, students
work through the forecast process with their mentors and have specific products that
they must generate and disseminate. Culminating the INNOVATIVE WEATHER pro-
gram is the opportunity for students to work as a limited term staff meteorologist in
a leadership position in the organization, thus providing peer mentoring to younger
students and further professional development for all students. This university—private
sector partnership allows the private sector partner to benefit by the service of its best
trained and most experienced staff members, especially in the severe weather season,
and it benefits the university, giving students more opportunities to gain forecast
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experience and build a strong resume by stepping into leadership roles within an oper-
ational program.

Since its inception in 2007, INNOVATIVE WEATHER has proved to be effective,
giving more than 50 students real-world experience in weather forecasting and help-
ing them connect what they learn in formal classes to actual forecasting practice.
This requires knowledge of weather risks, understanding probabilities as well as pos-
sibilities, and helping clients factor that information intelligently into their decisions.
This collaboration between student forecasters and decision makers requires students
to have a clear understanding of the weather risks specific to a client and be able to
translate the technicalities of the meteorology in a clear way to intelligent but not
meteorologically sophisticated users of that information. Consequently, the value of
the service is as much about understanding their needs and clear communication as
generic forecast accuracy as measured by the Brier Skill Score or the root-mean-square-
error. At the same time, it helps a set of students mature professionally in a manner
similar to what happens for students who become involved in undergraduate research
experiences.

Programs such as COMET and INNOVATIVE WEATHER reflect a wider recognition
of the need to reconnect meteorology education with forecasting training, or at least to
see these as two distinct yet interdependent educational needs.

Lamos and Page (2012; see https://www.meted.ucar.edu/training_detail.php), in
a concept paper discussing how professional development of forecasters should be
designed, promoted focused training that was directly tied to what forecasters did.
Forecasters must first be taught how to apply an understanding of key atmospheric
factors to the forecast and then to synthesize a large amount of information using
tools provided. Lamos and Page asserted that scientific understanding was necessary to
evaluate models and other tools; forecaster education needed to help forecasters build
a complex understanding so they could visualize atmospheric processes.

Doswell (2003, 2004) also provided a vision for improving forecaster education. He
proposed a creative method for learning, suggesting that forecasters would quickly gain
a much deeper understanding of both atmospheric dynamics and model limitations if
they could repeatedly change the input to locally run models and see the resulting out-
comes. Doswell’s vision is that all forecasters would be mentors to incoming forecast-
ers, and meteorological education would include learning how to mentor effectively.
Among the characteristics he promoted were high-level visualization and conceptual-
ization skills, a passion for the subject, and continuous learning. This work is consis-
tent with the findings of others.


https://www.meted.ucar.edu/training_detail.php

How Do People Come to Be Forecasters? 79

But until such a time as the reconnection of meteorological science and forecasting
is fully realized, we are still left with the question of how today’s forecasters learned to
become forecasters.

Some Not-so-Formal Learning Venues

Although formal learning has both positive and negative attributes, there are many
other opportunities for forecasters (and others) to remain on a path of “continuing
education.” Mentioned earlier are various workshops and training sessions at AMS and
NWA conferences. Indeed, the entire annual NWA conference and many specialized
AMS conferences incorporate presentations and/or workshops that support learning
(e.g., new ways to use GOES-R data, case study analyses, lessons learned from a summer
field research program). Currently, these conferences also focus on social science and
social media aspects of forecast dissemination and forecaster sharing/learning.

There are also a myriad of internships in forecasting, research and management
(e.g., run by companies and/or coordinated by various AMS committees), webinars,
archiving conference presentations online, and published NWS and private sector
articles and storm summary reports available for forecasters to access (even on “slow”
forecast days). In fact, both the NWA and the AMS require their TV Broadcasters, Certi-
fied Consulting Meteorologists, and Digital Media Sealholders to document continuing
education activities (from a myriad of possible settings—conference attendance, publi-
cation of research, and publishing blogs) to retain their “seals.” Links for seals and cer-
tifications are [http://www.nwas.org/seal/index.php] and [https://www.ametsoc.org/
ams/index.cfm/education-careers/ams-professional-certification-programs/].

Finally, all WFOs and National Centers publish their “Forecast Discussions” online,
making them readily available for forecasters, students, TV meteorologists, and others
to use within self-learning frameworks.

Conclusions

Historically, there has been a disconnect between education in the science of meteo-
rology and training in the profession of forecasting. Although new initiatives and pro-
grams are aimed at remedying this situation, the near absence of formal education and
training on the forecasting task leaves professionals to self-direct the majority of their
learning and learn by doing their jobs. Learning to forecast is affected by how well
meteorologists can regulate their learning, their career stage, and contextual, socio-
cultural factors. Forecasters have to learn from other forecasters. Younger forecasters
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need to learn how to change their mindset when expecting one type of weather and
another occurs. But the converse also holds true: Senior forecasters need to learn from
younger ones (e.g., how to adapt to new software systems and tools). A repeating
theme in the stories that forecasters tell about their careers is that a strong sense of
identity with their professional role as a forecaster is important to how they engage
in learning, particularly when they were poorly supported and had to create strate-
gies to learn. Learning to forecast is faster, forecasters are happier, and their resulting
knowledge is better connected and more thorough if they have social support: hear-
ing how other forecasters think about the weather and how they use data in different
situations. Forecasters are more likely to persist through adverse work conditions and
poor social support if they had a strong sense of identity, going so far as to create their
own strategies to learn.

Forecasting is an application of the science of meteorology, yet much of what mete-
orological education offers is unnecessary for acquiring short-range or even long-range
forecasting skills. The separation of the meteorological science from the forecasting
art has the actual effect of impeding the acquisition of knowledge about the weather.
One can, and indeed should, say that forecasting is both a science and an art (Doswell,
Lemon, and Maddox, 1981). To borrow a turn of this phrase (and fuzzy up the artificial
basic vs. applied science distinction), it might be more appropriate to say that weather
forecasting is a subtle science and an exact art (Bennett and Flach, 2011).

This chapter has described how people get to be forecasters and how they grow
in that role. But how do they get to be expert forecasters? This is the topic of chapter
7. However, before addressing that topic, we need to say more about how forecast-
ers describe their reasoning (chapter 4) and how well they perform (chapter 5). That
information will put us in a position to ask whether forecasters, the really good ones,
qualify as experts.



4 How Do Forecasters Describe How They Reason?

The literature of meteorology includes many discussions attesting to the importance
of forecaster reasoning, skill, and knowledge in determining forecaster performance.
For example, the forecasting of severe local storms by the National Storm Prediction
Center has been said to depend on the forecaster’s “interpretation and modification”
of numerical model analyses, “subjective” surface analyses, and the “close examina-
tion” of satellite imagery (Johns and Doswell, 1992, p. 589). Even when forecasting
is based on one or another predictive algorithm, there is a fundamental reliance on
human experience and judgment. For instance, Gaffney and Racer’s (1983) algorithm
for forecasting the outbreak of severe storms relied on key parameters (e.g., 500 millibar
vorticity advection) that were chosen because they “are thought by various meteorolo-
gists to be indicative” (p. 274).

To concretize this avowed importance of forecaster reasoning, a number of fore-
casters had attempted to describe the forecasting process or workflow, by referring to
elements of team work, knowledge, perceptual skill, conceptual models, principles of
forecasting, and reasoning processes.

Teamwork

Forecasting is a team effort, especially during outbreaks of severe weather or in impact-
ful long-term, large-scale weather events (e.g., hurricanes, winter storms). In the
Weather Forecast Offices (WFOs) of the National Weather Service (NWS), multiple fore-
casters share the workload. They will each have particular storm cells to track or regions
on which to focus in the attempt to detect storms and track their evolution. Typically,
the forecasting responsibility is distributed by customer (e.g., aviation, marine, pub-
lic). Forecasters share views of data fields of various kinds, share their findings, and
engage in discussions of their conceptual models of the weather (Andra et al., 2002),
with the goal of generating a consistent and reliable forecast across the board. Hence,
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the forecasting workspace is designed around the fact that the activities are those of
teams (chapter 2). Collaboration is also fundamental to on-the-job learning and the
development of careers through mentoring (chapter 3). As we will describe in chapter
5, forecasts are the result of collaborative decision making and judgment. As we will
show in chapter 7, collaboration is fundamental to the achievement of expertise at
forecasting. Our focus now, however, is on how forecasters describe their individual
reasoning, with the understanding that the cognition is “distributed” and “situated” in
a collaborative context.

Knowledge

Charles Doswell, a senior meteorologist with the National Severe Storms Laboratory
of NOAA (1986¢; Brooks, Doswell, and Maddox, 1992), and Rosemary Dyer, a senior
meteorologist with the U.S. Air Force (1978, 1990), made repeated reference to the fact
that forecaster skill depends on knowledge of the principles of meteorology:

As an example of how knowledge is applied ... [consider the forecast problem of whether a me-
soscale convective system] will continue or dissipate. ... Having a knowledge of the system's
history, the forecaster can employ simple extrapolation ... knowing whether it has been intensi-
fying or dissipating is clearly helpful. However, there are more complex questions that must be
answered by nonlinear [i.e., human] methods. Is some large-scale process sustaining the system?
Are there any topographic features that might alter the system? How might diurnal cycles with-
in the boundary layer modify the system's evolution? Does the present system fit any physical
model? ... the forecaster uses knowledge of meteorology to answer such questions. (Doswell, 1986c,
pp. 699-700)

The forecaster needs to know about local effects, patterns, and trends; and the effects
of the regional geography. This has been known since the earliest days of forecasting.
For instance, Moore (1922) presented a number of rules, including, “A low from the
Northwest that reaches western Minnesota and western Iowa without precipitation or
clouds will pass over Wisconsin as a dry low, unless the isobars are closer than five-
eighths of an inch” (p. 154). Such local knowledge has extended in modern times to
an awareness of the ways in which the computer models over- or underpredict certain
things in certain regions:

Operational forecasters quickly become aware of problems with [computer] models that affect
their forecast area (Fawcett, 1969). For example, the weather forecast for Newport, Rhode Island,
which sits on an island at the mouth of Narragansett Bay, uses the forecast for Providence, 25
miles away, but is often insufficiently adjusted for the sharp influences of the land-ocean inter-
face. Forecasters deal with this by taking note of phenomena that are not handled properly by the
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model, and their confidence in the model’s prediction is a function of what they know about the
model and the weather situation. (Brooks et al., 1992, p. 121)

The importance of sensemaking is also noted in discussions of military forecasting.
For example, Colonel Beth McNulty (2005), commander of the U.S. Air Force Weather
Agency, said that:

Systematic forecast development employs the ... available data to eliminate personal biases antici-
pate change, and explain the reasoning behind the forecast. A forecaster creates a mental concept
of how the weather should develop over the next few hours or days. ... This mental image is the
first stage in developing a forecast. (p. 5)

As we mentioned in chapter 2, a critical role is played by the forecaster’s formation
of what meteorologists refer to as a conceptual model. A conceptual model is said to
support the perception of weather phenomena and the testing of hypotheses (see the
classic text by Pettersen, 1940, ch. 11). In their discussion of information-processing
systems for forecasting, Chisholm et al. (1983) concluded that forecasters’ understand-
ing is in terms of a “mental subjective integration” of data. Doswell and Maddox (1986;
Doswell, 2004) regarded the formation of conceptual models as the critical step in
forecasting, the “vital link” between objective or quantitative data and qualitative or
intuitive information.

Giraytys (1975) described “mental integration” in a way that makes it clear that
what these meteorologists are talking about is what cognitive scientists refer to as a
mental model: “The forecaster develops ways of compensating for shortcomings in his
information processing system. One [way] is to mentally integrate two dimensional
‘pictures’ into a four-dimensional forecast” (p. 112). Many meteorologists and forecast-
ers are explicit on this point (e.g., Morss et al., 2015).

Roebber and Bosart (1998) examined NWS forecasts of precipitation during cyclo-
genesis events—when a trough of low-pressure deepens and begins a counterclockwise
rotational circulation (in the Northern Hemisphere). Their analysis suggested that the
patterns of precipitation cannot be derived from the overall weather pattern at the scale
of continental low-pressure systems. Processes that are at a more local scale and that
occur prior to and during cyclogenesis must be taken into account. Roebber and Bosart
argued that proficient forecasters are those who are better able to do this—their concep-
tual models of forecast problems are extraordinarily rich. The forecaster’s mental model
integrates the large amounts of information (Dyer, 1987; Giraytys, 1975). In chapter 1,
we discussed the data overload problem: the fact that forecasters literally have access
to more information and data than they can possibly deal with. Forecasters know and
understand this problem well, of course. Forecasters suggest that they are able to create
a conceptual or mental model in order to integrate information from many sources.



84 Chapter 4

We see that forecasters assert that they reason imagistically, in four dimensions
(Doswell, 1986¢; Godske et al., 1957).

Perception and Recognition

Dyer (1987) made a case for the importance of mental integration by presenting a chal-
lenge to the reader:

Watch any weather forecast on television ... satellite photos, radar, and charts all dance across
the screen. ... Visit any forecast office and note the rows of charts ... the computer displays
with overlays and split screens. ...What is [the forecaster] doing?—what all forecasters do—image
processing. (p. 23)

The importance of perception cannot be emphasized enough, and it shows in Ell-
rod’s (1989) discussion of how to predict clear air turbulence, which emphasizes the
visual inspection of satellite images and the visual appearance and shape of clouds
(e.g., the shape of a comma cloud, the degree of curvature, the appearance of a dry slot,
the presence of transverse cirrus cloud bands near the trailing edge of the comma, and
the location of shear). The Dvorak technique for estimating tropical cyclone intensity
is based on the visual inspection of satellite images (Dvorak, 1975; Velden, et al., 2006).
Even the basic “hook echo” shown on radar as an indicator of a tornado (Glickman,
2000) is identified by visualization.

The perceptual foundations of meteorology and forecasting stand out in the history
of the standard methods of charting and depicting weather features, and in discus-
sions of chart-making skills and the “art” of perceiving weather features in collections
of observations (see Gregg and Tannehill, 1937; Monmonier, 1999). The perceptual
foundations are perhaps most salient in the literature on the interpretation of satellite
images. In high-resolution imagery, the experienced forecaster can determine a great
many things that escape the eye of the novice until they are pointed out (and some-
times even after they are pointed out—even the informed novice needs time to learn
the cue configurations). Scores of examples could be listed (see American Meteorologi-
cal Society, 1996; Bader and Waters, 1987). A dark notch in sunglint over the ocean
reveals regions of calm seas (Fett, White, Peak, Brand, and Tag, 1997). The patterns in
large-scale and fine-scale cloud structures reveal the development of cyclonic systems
and the ways in which the dynamics of air masses result in the cloud features that one
can observe (Conway, 1997). From the perceptible shape of cyclonic cloud systems,
one can even estimate the surface pressure at the cyclone center (Smigielski and Mogil,
1991)—a useful tool for oceanic analysis and forecasting. Meteorologists have often
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commented on their ability to engage in rapid recognition of patterns and configura-
tional cues (see Pliske et al., 1997, 2004).

Conceptual Models

In chapters 2 and 3 we referred to the forecaster’s conceptual model of weather phe-
nomena and the dynamics of the atmosphere (Hoffman et al., 2000; Lowe, 1994; Perby,
1989; Trafton et al., 2000). Some psychologists, especially behavioral psychologists, are
uncomfortable with notions of a mental representation. This is at least ironic given
that psychology is supposed to be about mental life. Meteorologists have no difficulty
with the notion of a “conceptual model” at all. As forecasters assimilate information
about what is going on in the atmosphere, they develop a subjective, imagistic repre-
sentation of their understanding. Apart from the fact that meteorologists do not suffer
from the historical baggage that has burdened some psychologists since the days of
behaviorists John Watson and B. F. Skinner (see Rachlin, 1991), the main reason that
meteorologists are comfortable with the notion of a mental model is that the concept
has been in the literature of meteorology for decades.

Pioneers of meteorology of the late 1800s and early 1900s distinguished between
their mathematical or formal models of the weather (based primarily on hydrodynam-
ics) and their conceptual models. For example, in Norway, Vilhelm Bjerknes

and the group of Bergen meteorologists set up a network of weather stations across Norway which
recorded weather observations and reported the measurements back to Bergen. The measure-
ments for each location were then plotted on a Norway map to give a picture of weather over
a wide area. As Bjerknes and the others studied the picture maps, they noticed that different
air masses—a warm and a cold—existed, and also that the most active weather conditions were
found along narrow zones in-between these air masses. In military fashion, (World War I was of
course happening during this period time) they called these boundary zones weather “fronts”—
an analogy to the battlefronts of war. (Means, 2015, p. 1)

Bjerknes (1919) drew diagrams such as the one shown in figure 4.1, a depiction of
his conceptual model of a cyclone, showing clouds, streamlines, precipitation, and a
pair of vertical cross-sections, one to the north and one to the south of the cyclone cen-
ter. This is not fundamentally different from today’s weather maps and displays: “the
shape of a frontal cyclone is indicative of its stage of development and can thus give
information about its future behavior” (Eliassen, 1995, p. 9). This most basic weather
model of all remains a mainstay of meteorology to this day.

The pioneers of meteorology were strong believers in the power of running hydro-
dynamic computations forward in time as a means of creating weather forecasts.
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Figure 4.1
Vilhelm Bjerknes’s (1919) “ideal cyclone” diagram. (Reproduced with permission from The Royal
Swedish Academy of Sciences.)
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But they were equally strong believers in the notion of conceptual models, and they
applied these models to what they did in research and/or operations in the forecasting
services they championed and academic departments they established. In their classic
text on the science of meteorology, Godske, Bergeron, Bjerknes, and Bundgaard (1957)
wrote:

Paramount in importance are the special talents with which the analyst should be endowed: a
faculty of combining a large number of observations into the most logical three-dimensional
mental pictures. (p. 653)

In the 1960s, Vernon Dvorak developed a system for estimating the intensity of
tropical cyclones based on the visual pattern of the cyclone as seen from above (in
satellite images) (Dvorak, 1973; see also Smigielski and Mogil, 1991; see figure 4.2). The
Dvorak Technique, still used today by NOAA, also incorporates a decision-tree process

and a data-collection spreadsheet.
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Figure 4.2
Vernon Dvorak’s (1973) diagram of his scheme for estimating the intensity of tropical cyclones.
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Figure 4.3
A conceptual model of the structure of supercell storms (reproduced with permission from the
Weather Underground). RFD and FFD are rear and forward flank downdrafts, respectively.

Another example of a conceptual model is shown in figure 4.3. This is a model of
the structure of “supercell” storms. Note that this attempts to convey dynamics as well
as structure.

The development of a good conceptual model for the formation of supercells empha-
sizes the detection of convection as early as possible in the development of the storm
system and the anticipation of the kinds of warnings that might have to be issued (e.g.,
flooding, damaging winds, tornadoes) (Doswell, 1992). The forecaster builds a mental
model of the storm structure (Moller et al., 1994) (see figure 4.3). “Without conceptual
models, the meteorologist does not have the means to anticipate intelligently storm
evolution and threat and therefore the range of potential outcomes necessary to deter-
mine warning content” (Andra et al., 2002, p. 561). An example is the tendency for a
line of storms along a cold front (a “squall line”) to produce damaging winds rather
than tornadoes.

Forecasting relies on a number of widely accepted conceptual models, and not all
of them are models of things like storm structure (as in figure 4.3 and also figures 2.9
and 2.10 [plates 7 and 8]). For instance, there is a widely accepted model of the El Nifio
oscillation of warm and cold temperatures in the Pacific, which is used in the analysis
of tropical cyclones as well as in the prediction of weather in the continental United
States (see http://www.cpc.ncep.noaa.gov/products/precip/CWIlink/MJO/enso.shtml).
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Box 4.1
Thunderstorms, Supercells, Mesocyclones, and Tornadoes

Thunderstorms are a form of convection, which is the vertical movement of parcels of air.
Two adjacent parcels of air can have different temperatures and moisture content, meaning
that one of them is less dense and therefore more buoyant. These differences can arise from
many factors, including solar heating during the day or a breeze coming off the ocean. As
the parcel rises, it cools, but as long as it is rising into air cooler than it is, the parcel will
remain buoyant. As the parcel cools, the moisture within it condenses, releasing a form of
heat that tempers the rate at which it is cooling. If there is sufficient vertical instability,
then a thunderstorm can develop.

Supercell thunderstorms, a special type of severe thunderstorm, contain steady, rotating
updrafts called a mesocyclone. Supercells and the mesoscyclones within them are often asso-
ciated with severe weather (Walsh, Charlevoix, and Rauber, 2014). Their rotation allows
the storm to persist much longer than the time required for a single, buoyant air parcel to
rise to the top of a thunderstorm. Supercells only form in environments characterized by
vertical instability and vertical wind shear. The rotation in supercell updrafts begins from
horizontal rotations within the parcel of rising air and is sustained by the vertical wind
shear that the updraft experiences. The resulting mesocyclone can be relatively large: 2 to
10 km in diameter. The speed of rising air within these mesocyclonic updrafts can be quite
high, peaking around 170 mph, enabling the storm to loft hailstones until they grow to
considerable size. Sometimes the air feeding the updraft of a supercell occludes (much like
a large-scale middle-latitude cyclone does), leading to the formation of a new updraft and
mesocyclone adjacent to the original one. This is, in part, what leads to tornado families—a
series of tornadoes from one supercell thunderstorm. Supercell thunderstorms produce all
the violent (EF4-EFS) tornadoes, but perhaps fewer than 30% of supercells spawn any tor-
nado at all.

Mesocyclone [http://glossary.ametsoc.org/wiki/Mesocyclone]
Supercell [http://glossary.ametsoc.org/wiki/Supercell]

Forecasters of the “old school,” who grew up doing hand chart work, have told us
that their mental images of the weather are rather like a traditional weather chart but
are animated in the mind’s eye. It might be easiest to think of the forecaster’s mental
model as a dynamic depiction of masses of air, some large, some small, some warm,
some cold, some dry, some wet, all of them interacting, merging, and slipping over and
under and/or mixing with one another. All of these dynamics as they are visualized are
“governed” by (the forecaster’s knowledge of) the principles of atmospheric dynamics
(e.g., how a large dome of high-pressure behaves at the trough that forms at its interac-
tion with another air mass).
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Interestingly, the most recent technologies in weather data display are now approxi-
mating what we describe here as a conceptual model of the atmospheric dynamics. The
visualizations of PRAVDA and Met.3D presented in chapter 2 are examples (figure 2.9,
2.10, and 2.11 [plates 7, 8, and 9]). Although these are computer-generated displays of
computer model outputs, and as figures in a book we cannot present them as dynamic
animations, they might be regarded as approximations of forecaster’s conceptual mod-
els in that they are principled combinations of concepts, data, and dynamics and are
imaginable. Interestingly, a display of the same type and character as those shown in
these figures is used at a NASA website to illustrate Bjerknes’s ideas of mathematical
weather forecasting [http://earthobservatory.nasa.gov/Features/Bjerknes/].

All of the “conceptual models” that meteorologists have developed, to distinguish
their understanding from their externalized, mathematical, and computational mod-
els, can be likened to the psychologist’s notion of a memory “schema” and similar
notion of a “mental model” (Bartlett, 1932; Gentner and Gentner, 1983; Gentner and
Stevens, 1983; Johnson-Laird, 1983; Klein and Hoffman, 2008; Stevens and Collins,
1978). A schema is regarded as a framework or prototype for understanding some-
thing. The mental model notion places more emphasis on the visual imagery aspect to
comprehension. The forecaster’s notion of a conceptual model and the corresponding
psychological notion of a mental model are important themes that weave across the
chapters of this book.

The distinction between the forecaster’s conceptual model and the psychologist’s
theory of mental models is subtle. For example, consider the Fujita scale for tornado
intensity. In 1971, Tetsuya Fujita of the University of Chicago and Allen Pearson of
the National Severe Storms Forecast Center (now NSSL) presented a conceptual model
and a scale for rating tornado intensity. The scale is based on the damage to buildings,
trees, and so on. Previous scales had been based only on estimates of maximum winds.
The conceptual model relies on the ways in which different types of buildings respond
to strong winds as a function of the building construction, foundation, and so on.
This is regarded as a conceptual model, although it is rather unlike, say, the Dvorak
model of cyclogenesis (figure 4.2) or the general model of supercell structure (figure
4.3). These two conceptual models clearly illustrate how the forecaster’s conceptualiza-
tion of weather dynamics relies on visualization and visual imagery and hence tie simi-
larity to the psychologist’s notion of a mental model. But not all conceptual models in
meteorology have this aspect.

We therefore have four types of “models” to keep clear about:

- the forecasters’ conceptual models or schema for understanding the atmosphere,
« the forecasters’ descriptions of forecaster reasoning,
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- the forecasters’ formal computer models, and
- the psychologists’ reasoning models that describe how forecasters think.

In the following chapters, we consistently use these phrases to refer to these different
kinds of models.

General Forecasting Principles

Armstrong (2001a, b; see also Harvey, 2001) listed 139 “principles” of forecasting
derived from entries in a forecasting handbook and subsequent open peer commen-
tary, including commentary by 20 individuals who were said to be experts. This listing
is a valuable compendium that spans all aspects of forecasting. Principles cover every-
thing from policy (forecasts should be independent from politics) to process (i.e., the
use of graphical displays).

The principles are clustered into categories, which include: Problem formulation,
problem structuring, information acquisition, information analysis, integrating quan-
titative analysis with human judgment. Principles refer to the preference for develop-
ing causal models, the importance of assessing the validity of a forecast, the preference
for relying on quantitative analysis, the advisability of being conservative in uncertain
situations, rely on the concept of statistical significance, etc.

It is noteworthy that a quarter of the principles refer not just to the notion of fore-
casting expertise, but to the value of forecasting expertise.

- Experts should be tapped to brainstorm about risk or bias situations.

« Experts should be asked to do a decomposition analysis of their forecasting processes.
- Impartial experts should agree in their forecasts.

- Data analyses should conform to the experts’ expectation .

« Experts can determine which forecasting methods are most appropriate for a given
situation.

- Experts determine which data and which variables are the most relevant and impor-
tant to the forecast situation.

Some of the principles that refer to experts seem to take the perspective of the per-
son who is seeking a forecast and is consulting a forecaster. The decision maker should
assess the validity of a forecast by seeing whether experts agree. The decision maker
is advised that expert forecasts can be influenced by the way the question is framed.
The decision maker should seek out experts with different backgrounds. The forecast
should be famed in a way making it easy to understand.
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In the phrasing of some of these principles, it seems to be assumed that all forecast-
ers are expert. On the other hand, the principles are rather clear that experts are indi-
viduals who have “good domain knowledge and are not subject to bias” (p. 25). But
the forecaster/expert is not always to be trusted, as in principles that recommend that
the decision maker find experts who are unbiased and impartial. One principle asserts
that experts can get confused by spurious data. Experts should be asked to justify their
forecasts in writing. Do a reliability check by having the expert do their forecast twice,
some days apart. The decision maker should be sure to consult more than one expert
(the range of 5-20 is mentioned). The decision maker should rely on the forecaster’s
subjective judgments only when there is expertise that is brings to bear knowledge in
addition to that provided by the formal (model) analyses.

Armstrong notes that some of the principles verge on common sense (e.g., graphs
can be confusing, it is important to rely on the notion of statistical significance is
important). The principles fall at a general or high level, and as such are quite valuable
as advice, and reveal aspects of the overall job of the forecaster. However, in their form
as a decontextualized list, they do not fit together to describe a coherent a workflow
or start-to-finish reasoning process. That said, the principles are consistent with the
reasoning or workflow models that have been proffered by meteorologists, and that we
describe in this chapter.

Reasoning Process

In many discussions by forecasters of their forecasting procedures, one sees descrip-
tions of their reasoning processes and strategies:

the subjective forecasting of any weather phenomenon first requires an understanding of the
relevant physical processes. ...The meteorologist observes, evaluates, and thinks ... thus, there are
a number of activities which directly involve the cognitive processes of the meteorologist. (Lusk,
Stewart, Hammond, and Potts, 1990, p. 627)

In their classic text on the science of meteorology, Godske, Bergeron, Bjerknes, and
Bundgaard (1957) discussed at length such activities as the preparation of maps and
reports, but when it came down to discussing what the meteorologist actually does,
their presentation was in reference to reasoning:
the data must be fitted into the kinematically and dynamically most probable system ... models

are found by experience. ... Paramount in importance are the special talents with which the
analyst should be endowed: a faculty of combining a large number of observations into the most
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logical three-dimensional mental pictures, an intimate knowledge of the dynamics of the tropo-
spheric models and of the local factors affecting them, expeditiousness in achieving the analysis
in the shortest time possible without sacrificing quality. (pp. 651-653)

In his review of the short-range forecasting methods, Doswell (1986¢) made similar
statements about forecaster reasoning:

In contrast [to numerical modeling] the human-based forecast process is more complicated ... the
human does not weight equally all the data on four dimensions. Instead, pattern recognition is
used to assimilate complexity. Humans blend experience, theory, concepts, conjectures, and all
the available data ... into a four-dimensional image of the atmosphere ... pattern recognition is
crucial to the production of the trend ... knowing how the atmosphere will evolve may depend
on knowing what processes are responsible for the observed distributions ... the human can make
correct assessments and predictions with limited data—something that no purely objective ap-
proach can accomplish. This ability is counterbalanced by the capacity for disastrously incorrect
assessments and predictions. (p. 690)

Additional instances of descriptions of forecaster reasoning are the decision trees for
short-range forecasting (Belville and Johnson, 1982; Ellrod, 1989; Miller, 1972). Such
trees represent specific sequences of decision points involved in each of a variety of
forecasting situations (e.g., heavy snow). Each decision point in a tree involves a para-
metric question (e.g., about relative humidity, air temperature at various geopotential
heights, turbulence, vorticity, and stability), each of which is to be answered in terms
of weather data. Proceeding down a tree beginning with the most important or most
diagnostic features, one ends up at terminal nodes that contain diagnostic conclusions
(e.g., the occurrence of a convective event). Although the decision points are expressed
in terms of weather parameters, it takes a forecaster to inspect the data and determine
what parameter values to enter into the decision process.

Alan Murphy and Robert Winkler (1971) conducted a survey of forecasters at a com-
mercial weather services company. The questionnaire asked about the information
sources that were used and their importance, the relationships between judgment and
forecasting, the meaning of probability forecasts, and the relation of the forecasts to
the eventual weather. Salient findings were:

. the information deemed to be most important (e.g., hourly data, depending on the
season) was also the information that the forecaster examined first,

. the information deemed least important in easy forecasting situations was regarded
as more important in difficult forecasting situations,

. forecasters sometimes “hedged” when creating their forecast products, that is, the
forecasts did not completely represent their judgments (see also Murphy, 1993),
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Table 4.1
Proposed characteristics of a good forecaster

Technical Skills

Technical proficiency

Adaptability (to technology)

Ability to synthesize knowledge to useable information
Ability to learn from past events

Good diagnosis and prognosis skills

Ability to assimilate and integrate wide variety of data/information
Retain objectivity about forecast

Personality Components

Are aware of user needs, knowledge, expectations
Learn from peers

Have a strong interest and passion for meteorology
Have good management and people skills
Acknowledge others’ perspectives

Are honest in communication with other forecasters
Can withstand criticism

Accept accountability for mistakes

Have stamina for shift work and long hours

Are dedicated to the profession

Provide feedback to developers/researchers

Source: Adapted from Stuart et al. (2006).

- forecasters differed about the meaning of POP forecasts—as subjective probability or
“fair bet” as to whether precipitation would occur on the forecast area or as relative
frequency of occurrence versus nonoccurrence across similar weather situations,

. forecasters agreed that the meaning of the POP forecast depends on the situation
being forecast (shower vs. nonshower forecasts, point vs. areal forecasts), and

. forecasters were willing to alter their forecasting procedure if their forecasts were
incorrect (i.e., spend more time inspecting data, reexamine past instances of good
performance).

At the 2004 annual meeting of the American Meteorological Society, approximately
200 members representing the international meteorological community showed a
“remarkable consensus” on the characteristics of a good forecaster (Stuart et al., 2006).
These characteristics were placed into two broad categories: meteorological/technical
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skills and personality. Although we find this distinction to be psychologically naive, we
retain it in table 4.1. The listing of technical skills basically seems to say two things: (1)
good forecasters are good at forecasting, and (2) good forecasters are good at learning
and reasoning. The personality components listing is somewhat more interesting, say-
ing that good forecasters are motivated, collaborative, and perseverant. But it should be
noted that most of the personality components perhaps say as much about forecasting
organizations as they do about the personality of forecasters.

Forecasters’ Descriptions of Forecaster Reasoning

By tradition, dating to the classic work of Godske et al. (1957), forecasting is often
described using the medical metaphors of “diagnosis” and “prognosis.” For instance,
Smith, Zuckerberg, Schafer, and Rasch (1986) described the forecasting process as
involving three sequential questions:

1. What is going on? (Diagnosis) —

2. Why is it happening? (Diagnosis) —

3. How is it going to change? (Prognosis).

Likewise, Doswell (1986a, 1986b, 2004) analyzed forecaster reasoning in terms of
the achievement of a diagnosis (a conceptual model of the weather) leading to a prog-
nosis (forecast). Lance Bosart (2003) characterized the weather analysis and forecasting
task by the following six elements:

. What happened?

. Why did it happen?

. What is happening now?
. Why is it happening?

. What will happen?

AN R W N =

. Why will it happen?
Bullock (1985) and Curtis (1992) described forecasting in terms of an iterative cycle
of six steps:
. Observation —
. Analysis —
. Diagnosis (synthesis) —
Hypothesis formation and testing —
. Prognosis (forecasting) —
. Back to 1.

oA W N e



96 Chapter 4

Meteorologists agree that forecasting is not an activity that can be completely pre-
scribed or proceduralized (LaDue, 2011). Only generalized guidance has been offered
describing the forecasting process. For example, renowned forecaster Leonard Snell-
man (1982, 1991) presented what he called the “forecasting funnel.” The basic idea is
that a forecast process starts with an attempt to get the “big picture” of what is happen-
ing in the hemisphere in terms of major forces and dynamics and then inspect data to
focus the understanding down to the continental scale (synoptic scale), at which point
one asks, “What will be the forecasting problem of the day?” at regional scales (meso-
scale). In parallel with the focusing of scale is an expansion of time. That is, the “big
picture” can be determined easily and quickly, but more time has to be taken to make
sense of what is happening at the smaller spacetime scales. In addition, Snellman listed
some specific strategies, including: (1) the “persistence forecast,” which assumes that
the weather of the immediate future is likely to resemble the immediate past; (2) the
“climatological forecast,” which relies on climate data and averages for various weather
parameters; and (3) the “consensus forecast,” which relies most heavily on the search
for agreement in the predictions of multiple computer models. Snellman noted that
forecasters rely on a combination of these approaches. Snellman’s reasoning model is
described graphically in figure 4.4.

In reaching for “the perfect forecast,” senior forecaster Joe Bastardi (2000) recom-
mended a process reminiscent of Snellman’s funnel, but Bastardi emphasized the first
step: Getting the big picture or the “teleconnections” that span the entire globe, the
major forces at hemispherical and continental scales, influences that the pattern seen
in one season has on the pattern seen in the following season, the source regions of the
larger air masses, and so forth.

To assure the perfect forecast, the forecaster must: a) be married to the weather, b) have a hands-
on knowledge of the actual hemispheric pattern ... ¢) first determine the preliminary forecast
based on the weather data and pattern, but without reference to the model results, then d) use
the modeling to fine tune the forecast. Is this contrary to the method most forecasters use today?
It is people, not machines, that can do this in a consistent basis for extreme weather situations.
(Bastardi, 2000, handout page)

Using a different sort of metaphor, Doswell et al. (1996) proposed an “ingredients”
approach to the forecasting process. The forecaster is advised to look daily at the ingre-
dients necessary for certain types of weather events and assess whether those ingredi-
ents are present in sufficient quantity or balance to cause those types of weather. This
approach corresponds roughly to the activities Snellman grouped into the synoptic
and mesoscale activities. It has been shown to be useful in certain types of forecasting
tasks such as flash flooding. To use an ingredients-based approach, a forecaster must
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know which ingredients are critical in each particular weather event and region; many
ingredients for something are nearly always present.

Conclusions

Meteorologists’ discussions of the processes of forecasting have relied on cognitive fac-
tors. The foundations of forecasting are said to lie in mathematical analyses—this being
the impression given by texts. But the foundations are also said to lie in “subjective”
analysis—analysis that depends on knowledge, reasoning skill, and perceptual skill.
These factors form the core of the modern conception of expertise in cognitive science
(see Ericsson and Smith, 1991; Glaser, 1987; Hoffman, 1992).

Discussions of the forecasting process by meteorologists point to the crucial roles
of reasoning skill, perceptual skill, knowledge, and experience wrapped up in a larger
process that forecasters refer to as conceptual modeling. It is striking that meteorology
(long considered a “hard” science) suggests that some of the most difficult aspects of
the forecasting process concern the human component (Doswell, 1986¢). Further, it
is clear that most meteorologists believe that the forecasting process will never be at a
level where the human component can be dismissed.

Meteorologists describe forecasting as a process by a “diagnosis-prognosis” analogy
to scientific and medical hypothesis testing (cf. Bullock, 1985; Curtis, 1992; Doswell,
1986a, 1986b, 2004; Snellman, 1982). They use a great deal of information to make an
informed decision, a form of abduction, that is, inference to the best possible explana-
tion based on some evidence. In addition, meteorologists place considerable emphasis
on perceptual skill, that is, the ability to perceive meaningful patterns in data and
displays.

Meteorologists seem to agree that forecasting is a collection of many activities that
morph over time as technology changes, and not a single activity that can be locked
down as a set of prescribed or mandated steps. However, they have outlined general
approaches to creating a forecast (e.g., the forecast funnel by Snellman, 1982; see chap-
ter 8), which is to look daily at the ingredients necessary for certain types of weather
events and assess whether those ingredients are available in sufficient quantity or bal-
ance to cause those types of weather. This ingredients-based approach has been shown
to be useful in certain types of forecasting tasks such as flash flooding (Doswell, Brooks,
and Maddox, 1996). To use an ingredients-based approach, a forecaster must know
which ingredients are critical in each particular weather event and region because
many necessary ingredients are present.
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Murphy and Winkler (1971) drew the following conclusion from the answers that
forecasters gave to their questionnaire about the forecasting process:

[they] provided very little information regarding the nature of the assessment process itself. ... In
view of the fact that weather forecasting is, and is likely to remain, a process in which forecasters
assimilate information from a variety of sources and formulate judgments on the basis of this
information, the nature and “efficiency” of the assessment process are “problems” of considerable
importance. (p. 163)

Research on forecaster reasoning addresses this gap and is discussed in chapters 8 and 9.






5 How Well Do Forecasters (and Forecasts) Perform?

A forecast issued 26 January 2015 said that an imminent blizzard of “historic proportions” is pre-
dicted with seemingly total (100%) certainty to bury cities from Philadelphia to Portland. Rarely
does one hear forecasts of snowstorms described with complete confidence being of historic,
disastrous, life threatening, unprecedented, massive, etc. proportions even when only 24-36
hours in advance—not even with “historic” preceded by “likely,” “probably,” “potentially,” etc.
(Tracton, 2015)

" ou

“Weather forecasts today are at the point where their reliability and dependability are
really good” (Lorditch, 2009, p. 25). However, it is common to hear complaints that
weather forecasters are slouches, and how wrong their forecasts are. In the survey of
undergraduates taking introductory meteorology course, Knox and Ackerman (2005)
found that questions such as “Why is the meteorologist always so wrong?” were fre-
quently mentioned as being of interest. Here’s a story about a storm in 2000, about
“how they got it wrong” (from Ladue, 2011):

Human forecasters ignored the signs in real-time weather data and continued to trust the models.
About the time that snow began falling at surprising 1 to 2 inch per hour rates in North Carolina
on the evening of the 24th, models finally began to correctly place the storm track over land. Hu-
man forecasters scrambled to change their forecasts during the evening hours, but Washington,
D.C. was particularly affected by the timing: most people in that area go to bed before the late
night news. Unaware the forecast had changed, they did not leave extra time for shoveling drive-
ways or a longer commute. Officials responsible for activating sand and salt crews in the D.C. area
were able to call in staff and mitigate some of the effect (Sipress, 2000), but the snow fell hard and
fast during the overnight hours and into the morning, overwhelming snow-clearing efforts on
the Metro rails and major roadways (Layton and Sipress, 2000a, 2000b). It was hardly a routine
commute to work for D.C. area residents the next morning.

The population of the Washington, DC, area is more than 6 million. It was hit the
hardest because of the timing. New York and Boston were also hit hard, but they had a
little more time to get ready.
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Heard far less often are proclamations of forecaster and forecast successes. Consider,
for example, the blizzard of January 26-28, 2015, which struck the northeast United
States. It moved up the eastern seaboard from North Carolina to the Washington, DC,
New York, and Boston metro areas. The storm dropped a record 20.3 inches of snow
near where it developed in the Raleigh-Durham, North Carolina, area. Even as real-
time weather data began to foreshadow an ominous change in the expected evolution
of the event, all three numerical weather prediction models in use at the time contin-
ued to develop the storm sufficiently far offshore to avoid impacting the dense East
Coast population areas.

This storm event and the sheer magnitude of the expected snowfall (two to three feet of snow)
appeared on the forecasting horizon three to five days in advance. The timing [of the predicted
snowfall] was almost right on for most locales and the storm’s central location was only about
100 miles or so from the forecast position. Further, the storm (which hadn’t even formed yet
when the first snow forecasts were issued) did undergo rapid cyclogenesis (deepening), verifying
the “meteorological bomb” forecast. Snowfall reached the three-foot depth in some locations.
Blizzard conditions (forecast days in advance) occurred. All in all, this was a superb forecast. Such
a forecast, with this degree of overall accuracy, would not have been possible 30 to 40 years ago.
(Mogil, 2015, p. 5)

The NWS forecasters issued strong warnings of potentially huge snowfall amounts.
The amounts and the places where the snow was heavy were all forecast well. But
there is a thing about blizzards, called the “steep snowfall gradient.” Even just two or
three miles distance can mean an inch or less snowfall. If the storm center had shifted
50 miles one way, Boston would have gotten less than a foot of snow, but instead it
got the largest snowfall in recorded history (records dating back more than 130 years).
Central Massachusetts was slammed with as much as 34 inches of snow. Had the
storm shifted 50 miles another way, New York City would have been buried in snow,
but it only received a few inches. Due to the steep gradient, the region at the western
edge of the snowfall, northwest of New York City, did not receive the huge snowfall
amounts that had been predicted. Same for New York City, generating much public
complaint about what was the one miscue in the forecast. There were lots of people
who could believe that the forecast was lousy. In fact, it was a huge success for severe
weather forecasting.

Airlines, school systems, agencies responsible for snow removal and others need to make plans in
advance. Forecasters need to and must convey their best assessment of a situation. A few words
like “... the expected snowfall gradient on the western side of the storm will be very intense. Small
shifts in storm movement can cause significant changes to the forecast in these areas,” would be
preferred to “there’s a 20% chance of more than 18 inches of snow but an 80% chance we'll get
at least six inches.” (Mogil, 2015, p. 6)
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Thus, one sees that forecasters are in a constant struggle to provide accurate, use-
ful, and understandable forecasts while explaining the reasons for uncertainties and
dispelling popular myth about how bad forecasts are.

While working in the Fort Worth TX forecast office, The Dallas Morning News called and asked
why our forecasts were so bad for the month. ... I described the forecast process to him and ex-
plained that data was limited in parts of Texas. The reporter went back to his desk and reported,
not about the forecast errors, but rather, about the problems involved in forecasting a region with
high temperature and moisture variability. (Mogil, 2015, p. 10)

The evaluation of forecasts for heavy snowfall (or heavy rainfall) involves the cal-
culation of “threat scores” (see Hamill, 1999). A threat score is the proportion of two
areas: The area where a forecast of heavy precipitation was made compared to the area
where heavy precipitation actually occurred. Lee Grenci of Pennsylvania State Univer-
sity examined threat score data from the years 1961 through 2000 (Grenci, 2001). “A
group of experienced forecasters typically earns a threat score of less than 0.2 out of a
possible 1.0 for predicting areas where snowfall will be 12 or more inches 36 to 60 hours
in advance” (p. 51). Data from the Weather Prediction Center for 2015 show monthly
average threat scores in the range of -0.39 to 0.43 [http://www.wpc.ncep.noaa.gov/
html/hpcverif.shtml]. In short, it is difficult to forecast where heavy snowfalls (or
heavy rainfalls) will occur. But there are successes. One spectacular success was for the
March 1993 winter superstorm that hit the northeastern United States. A timeline for
this event is presented in table 5.1.

Cyclogenesis along the East Coast was predicted up to five days in advance. The unusual inten-
sity of the storm was highlighted three days in advance, with snowfall amounts exceeding 12
inches predicted over a large area with unprecedented lead times. Numerous blizzard watches and
warnings were also issued with unprecedented lead times, allowing the media and government
officials to prepare the public, aviation and marine interests to take necessary precautions. ... The
forecasts for heavy snow and rate of snowfall were consistent across the entire event, although
the snow in eastern Kentucky was underforecast. The winter storm watches issued by WFOs in
the regions expected to receive the most snowtfall were issued with 25 to 40 hours lead time. The
winter storm warnings and special weather statements issued by the WFOs on 11 March were
issued with 10-20 hours lead time, before a single snowtflake had fallen. The long lead times al-
lowed emergency response to coordinate with utilities, implement shelter plans, advise health
centers to stock additional supplies, activate emergency broadcast systems, etc. ... the increasing
confidence of forecasters to predict major storm events, although hard to quantify, was perhaps
the key ingredient for the unprecedented lead times ... that led people to believe the forecasters
and take appropriate action. (Uccellini, et al., 1995, pp. 197-199)

Forecasts have definitely improved over recent decades but not enough to satisfy
forecasters. Writing in 2001, Lee Grenci said:
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Table 5.1

A timeline for forecasting the March 1993 superstorm

Chapter 5

What the What the Forecasters
Date Technology Said Thought What the Forecasters Did
7 Storm would develop Forecasters at the National Continued analysis of model
March along the East Coast Meteorological Center outputs and observational
of the United States. (NMC) felt that cyclogenesis  data.
The new forecasts and  along the East Coast of the
forecasts based on United States would be
statistical analysis unlikely because the models
predicted an 85% had overforecasted previous
chance of events of this type. Also,
precipitation (2-3 the weak cyclones that had
inches of snow) in developed tracked further
West Virginia. inland, and stronger ones
that had developed tracked
out over the Atlantic
Ocean.
7-11 Models consistently NMC forecasters’ skepticism  Continued analysis of model
March  predicted a major of the model outputs outputs and observational
cyclone along the East  diminished. data.
Coast.
10-11  One model predicted Consternation over the Local Weather Forecast
March  cyclogenesis in the inconsistency of the Offices (WFOs) along the

Gulf of Mexico,
whereas other models
predicted cyclogenesis
off the East Coast.

outputs of the various
computer models.

East Coast began issuing
discussions of the potential
for a severe storm, with
blizzard conditions.

They commenced frequent
briefings with local
emergency response
managers.

NWS Eastern Region
Headquarters advised the
Federal Emergency
Management Agency of the
possibility of blizzard
conditions.
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Table 5.1 (continued)
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What the What the Forecasters
Date Technology Said Thought What the Forecasters Did
11 The storm event The National Meteorological
March  began to unfold. Center (NMC) began to
A jet stream pattern issue storm summary
in the western United statements, predicting
States that the models “unusually severe” and
had predicted “perhaps record-breaking”
developed as snowfall of “historic
predicted and would proportions.”
influence the East Hurricane hotline was
Coast cyclogenesis. activated. WFOs along the
East Coast began to
exchange information and
develop a consensus on
which all of them could
rely. WFOs issued the first
winter weather watches.
11-12  Details of the Difficulty in predicting the
March  developing storm location, intensity, and
differed from what track of the developing
computer models cyclone.
were predicting.
12-13  The model that was The NMC relied more on
March  predicting storm the outputs of the computer
development along models that model the
the East Coast entire globe, rather than
underestimated the those that model just North
rapid cyclogenesis America, because those had
occurring in the Gulf tended to overpredict the
of Mexico. central low pressure of the
storm.
13 Models began to The model differences were =~ NMC forecast a developing
March  converge on significant. Forecasters low pressure center in the

cyclogenesis in the
Gulf, off the
Louisiana coast.

continued to compromise
between their own analyses
and the predictions of the
computer models about
cyclone position and the
central pressure of the low.

southeastern United States.
Adjusted the predicted
position of the rain-snow
line further south into
central Alabama.

With each successive model
run, the forecasters
predicted a lower and lower
central pressure.

Blizzard warnings were
issued by all eastern region
WFOs.



106

Table 5.1 (continued)

Chapter 5

What the What the Forecasters
Date Technology Said Thought What the Forecasters Did
13 The Sterling, VA WFO  Although the Sterling, VA The Sterling, VA WFO issued
March  had one of the first forecasters were busy frequent location-specific
NEXRAD radar because of the weather half-hourly nowcasts. They
installations. event and the need to work  confirmed radar scan data
Individual bands of using a new technology, with surface observations
snowfall could be NEXRAD enabled made by a network of
tracked. forecasting that was cooperating observers.
previously impossible.
14 Models began to Forecasters had to make NMC forecasters
March  converge in judgments concerning compromised among the
forecasting a major snowfall amounts and the models and their own
storm along the East timing of when snow judgments about the central
Coast but differed in would change to ice or rain  pressure and location of the
predicting its track. then back to snow. Snow cyclone.
Earlier that winter, amounts were of special Forecasters began to shift
two of the models concern because a record- the predicted rain-snow line
correctly predicted a breaking storm was further to the north.
track west of the expected.
Appalachian Forecasters felt that the
mountains when a models were showing
third model had kept underdevelopment of the
the storms along the cyclone.
East Coast. Different models were
predicting different
scenarios. Forecasters relied
on different models to
predict different things (low
pressure, storm track, etc.)
based on past experience
with the models’ successes.
14 Models began to
March  converge on the

storm track, placing it
along the New
England coastline.

Source: After Kocin et al. (1995) and Uccellini et al. (1995).
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Despite decades of progress in temperature forecasting, improved tornado warnings, and hur-
ricane predictions, and so forth, the science has made little or no headway in the category of
predicting areas of heavy precipitation over the past 40 years. ... If truth be told, we know a lot
more than we used to know about a lot of things, but we still can't predict areas of heavy snow
(or heavy rain) worth a hoot. (p. 50)

It is an overstatement to say “no headway.” In the case of predicting where heavy
snow will fall, it is important to consider the gradient effect we described earlier
as this reminds us that some things can be of intrinsically low predictability (see
Brooks, Doswell, and Maddox, 1992; Ehrendorfer, 1997; Mylne, 2006; Palmer and
Hagedorn, 2006). (We will have more to say about intrinsic predictability later in this
chapter.)

Stories that “they got it wrong” versus stories that “they got it right” can both be cor-
rect. After all, all forecasts have some degree of uncertainty associated with them, and
the expression of uncertainty in useful ways is an active area of meteorological research
(Novak, Bright, and Brennan, 2008). As the narratives we have presented show, some
forecasters get some bits of it wrong, and those bits can impact many people. But some
forecasters get most of it right most of the time. Forecasts are good and accurate far
more often than not. Although they are sometimes off the mark on details, the ways in
which they can be off the mark can be subtle and impactful.

Challenges in Measuring the Goodness of Forecasts

Consider again the March 1993 superstorm. The snowfall amounts in Eastern Ken-
tucky and the intense snowbursts in northern Alabama were underforecast. “Neverthe-
less, these forecasts were consistent in alerting the public of the extreme nature of the
event” (Uccellini et al., 1995, p. 194). In approaching the question of “How good are
the forecasts?” it is important to keep in mind that some weather events are highly
predictable and others are not. Low predictability can be incidental, that is, there may
be limitations to the nature of the data available (i.e., data may be inaccurate or sparse).
Bosart (2003) argued that the sometimes spectacular failures of expert forecasters result
from a lack of real-time data of sufficient resolution and quality, making it difficult to
exercise their skill in pattern recognition.

Low predictability can also be intrinsic to the weather phenomena. A given weather
variable might be highly predictable or nearly unpredictable depending on the nature
of the event (intrinsic predictability) The snowfall gradient effect is a case in point, as
we discussed above: Predictions of which areas will get heavy snow get threat scores of
only about 0.4.
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The question of whether forecaster performance is any good must take predictabil-
ity into consideration. There are situations where both the computer models and the
human forecasters get it wrong, but not because of any misuse of the models or defi-
ciencies on the part of the humans. Rather, it has to do with the limits of predictability
and understandability.

“Goodness” and the Context of Use

Whether a forecast is good depends on the context of use. For a public forecast for daily
high and low temperatures, the errors (usually plus or minus just a few degrees) are
fairly minimal and not noticeable by most public consumers of the forecast. But for an
application in forecasting energy demand for the electric utilities, say, small tempera-
ture errors have a big impact. This is also true for weather parameters that have critical
thresholds (e.g., freezing mark for temperature).

To approximate an answer to the question of what makes for a good forecast, we
need to distinguish technical accuracy and correctness from the public’s conceptions
and misconceptions about the meaning of forecasts. For example, there have been
many studies of how people (laypersons, college students) interpret and misinterpret
“chance of rain” or “probability of precipitation” (POP) forecasts (Adams, 1973; Giger-
enzer et al., 2005; Josslyn et al., 2009; Maunder, 1969; Murphy et al., 1980; Namm,
1979; Rogell, 1972; Savelli and Josslyn, 2013; Stewart, 2009; Wagenaar and Visser,
1979). In converse to the issue of the interpretation of probability, there are issues in
comprehension when uncertainty information is not provided.

We live in a forecasting culture in which specificity routinely exceeds the skill of the science.
Routinely, seven-day forecasts are represented on television as a single icon (cloud or sun),
a single number for a high temperature, and a single number for a low temperature. (Grenci,
2001, p. 51)

Public forecasts of daily high and low temperatures are generally not accompanied
by any expression of uncertainty, such as, “Today’s high temperature will be 41 degrees
but could be as high as 44 degrees or as low as 38 degrees.” Savelli and Josslyn (2013;
Josslyn and LeClerc, 2012) demonstrated that people’s proper understanding of tem-
perature forecasts is significantly aided by presenting such predictive intervals. Essen-
tially, the single value deterministic forecasts leave people not really knowing what will
happen.
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The Challenges of Measurement

A number of studies have been conducted to gauge the goodness of weather forecasts
issued by the NWS (and likewise the weather services in other nations). Conducting
this research is not entirely straightforward. Suppose a forecast for a region is that the
daily high temperature will be 80 degrees Fahrenheit, but the daily high as measured at
an official weather station ends up 82 degrees. What if the forecast for a region is a 50%
chance of rain, and it does rain, but only in roughly half of the region? Were the 50%
of people who decided not to carry an umbrella upset? Were the farmers who saw no
rain upset because they thought there was a chance they would see rain? Is a forecast
of “partly sunny” the same as a forecast of “cloudy intervals”?

What these questions suggest is that “errors” in forecasting are as much related to
the difficulty of measuring forecast accuracy as the inherent accuracy or correctness of
the forecasts themselves. Nevertheless, one has to try and measure success somehow.
Many evaluations look at one or another single weather parameter, such as rain or
temperatures. Any evaluation must determine what range of values for things such as
daily high temperature counts as a “hit.” Plus or minus three degrees is typically used
as a metric. Generally speaking for short-term forecasts (covering a period of one to
a few days), plots of observed values against predicted values for temperatures, rain
likelihood, and precipitation amounts form a nice 45-degree angle line (i.e., showing
a strong correlation) for forecasts from the NWS and commercial forecasting services
such as The Weather Channel (R. Olson, 2014). There are some indications that fore-
casts for rain tend to be overforecasts, that is, more rain is predicted than occurs, but
there are also indications that computer models do the same (Williams, 2013). Accord-
ing to R. Olson (2014), broadcast weather forecasters are especially prone to overforecast
rain amounts. A 2009 study by Intellovations LLC [http://www.forecastadvisor.com/
blog] measured temperature forecast accuracy in terms of error and found that fore-
casts from the NWS were accurate (i.e., within the 3-degree metric) for forecasts up to
two days in the future. For about 10 days in the future, the forecasts were no better
than what one would predict on the basis of climatological data. Similar findings were
reported for a study conducted by MINITAB, a statistical services company [http://
www.minitab.com/en-us/].

Short-term forecasts are almost always more accurate than longer-term forecasts because of the
inherent unpredictability of weather. Larger and more slowly evolving weather systems, such as
the ones associated with heat waves and cold spells are more predictable at longer times than
are the day-to-day variations that control rain showers. These systems last longer and trigger
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relatively gradual meteorological changes that can be more easily seen in the data ahead of time.
(Postel, 2012, p. 1)

Another way of looking at this matter is to evaluate how forecast accuracy has
improved over some period of years. Forecasts have been improving since the advent
of computer models (see Charba and Klein, 1980; Monmonier, 1999, chapter 5; Sil-
ver, 2012). There are footnotes to this, of course. For example, forecasts reaching out
over longer periods of time can be good for slow-moving weather systems and weather
related to large air masses. Forecasts for tropical weather are also generally quite accu-
rate, especially now that the computer models take into account the ocean surface
temperature, which is a key factor. The 2015 Statement on Weather Analysis and Fore-
casting issued by the AMS said the following:

For lead times of approximately twelve hours to two days, short-range forecasts [for] tropi-
cal storms, hurricanes, and frontal systems and their accompanying weather elements (e.g.,
temperature, wind, and precipitation) are significantly improving: two-day National Hurricane
Center hurricane track forecasts issued in 2012 had an average error of 79 miles as compared to
140 miles in 2002 and 192 miles in 1992. Likewise, two-day NOAA Weather Prediction Center
forecasts of 24-hour accumulated precipitation issued in 2012 were as accurate as one-day fore-
casts in 2006. Medium-range forecasts with lead times of two to seven days are most successful
for meteorological phenomena that stretch across areas of a thousand miles or more, or for
larger-scale conditions that set the stage for development of smaller phenomena, such as severe
thunderstorms. Over the past three decades, the skillful range of medium-range forecasts has
been extended by roughly one day per decade. Specifically, five- and six-day surface temperature
forecasts issued by the NWS had the same level of accuracy in 2012 as did three- and four- day
surface temperature forecasts, respectively, in 1992. Extended-range forecasts are typically issued
for meteorological phenomena that cover areas ranging from thousands of miles to the size of
a continent and involve lead times of one to two weeks. Presently, forecasts of daily or specific
weather conditions do not exhibit useful skill beyond eight days, meaning that their accuracy
is low. However, probabilistic forecasts issued to highlight significant trends (e.g., warmer than
normal, wetter than normal) can be skillful when compared to a baseline forecast. For example,
the NOAA Climate Prediction Center operational 8-14 day temperature forecast skill in 2013
was approximately equal to that of operational 6-10 day temperature forecasts from the late
1990s, again demonstrating an increase in forecast success over time. Finally, monthly and
seasonal forecasts are typically issued for meteorological phenomena that cover areas ranging
from the size of a continent to the planet as a whole. Skill in monthly and seasonal forecasts
is extremely variable from period to period, but the skill of NOAA Climate Prediction Center
one- and three-month forecasts of temperature and precipitation increased by more than 25%
between 2006 and 2013. Increases in forecast skill at these lead times can largely be attributed to
improved understanding of and ability to forecast major modes of large-scale climate variability
such as the El Nifio-Southern Oscillation. (©American Meteorological Society, 2015, Used with
permission)
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Forecast Verification Research

A great number of formal experiments have been conducted to evaluate the quality and
correctness of weather forecasts. These are referred to as “forecast verification” experi-
ments (e.g., Colucci, Knappenberger, and Cepa, 1992; Jolliffe and Stephenson, 2003,
2005; Murphy and Daan, 1985; Murphy and Winkler, 1987; Ralph et al., 2005; Winkler,
Murphy, and Katz, 1977; Tracton, 1993). In this research, the focus is on the accuracy
of the forecasts (things such as temperature outlook and precipitation amounts). For
each forecast, typically composed by a small group of forecasters rather than a single
individual, a single “skill score” is derived.

Skill score does not mean skill in a human performance or psychological sense. It is
a property of forecasts, not forecasters. A forecast has skill if it does better than what
one would predict on the basis just of the climatological data (Sanders, 1958). Thus, for
a locale with highly predictable weather—such as an island in the South Pacific—one
can accurately predict such things as daily high temperature, rainfall, and winds just
by looking up the mean values for that day of the year in the climate tables. A weather
forecast (which could be from a computer model or a weather forecaster) would not do
any better and would therefore have no “skill,” although it might come from a good
computer program or good forecaster.

The skill score represents the difference between the forecast values and the eventual
(actual) weather, but the difference or error is relativized to the climatological norm
(see Brier, 1950; Murphy, 1992; Stewart, 1990). For example, without even looking at
a weather map, one could predict zero rainfall for most of the days of the summer for
Los Angeles and receive a high hit rate, but a low skill score would be given because the
forecast would be so close to the climatological average. As another example, suppose
that a forecast for a given day is that there is a high likelihood of rain: up to 2 inches.
Suppose further that climatological data show that on that day, on average, rainfall is
likely and rainfall amounts are upward of 2 inches. Suppose further that it does indeed
rain, and it rains that much. In this case, the forecast has no skill even though it was
valid. However, if the forecast was for no rain, and it didn’t rain, then the forecast
would have had skill because the climatological forecast did not verify. As another
example, skills scores can be computed for variables as forecast by radar (Keenan, Potts,
and Stevenson, 1992). (For discussions of the mathematics of skill scores and different
ways of calculating them, see Hamill, 1999; Heideman, Stewart, Moninger, and Reagan-
Cirincione, 1993; Jolliffe and Stephenson, 2003; Manzato, 2005; Mielke et al., 1997;
Murphy, 1988, 1992, 1993; Murphy and Daan, 1985; Murphy and Winkler, 1970, 1987;
Stephenson, 2000; Stewart and Lusk, 1994; Wilks, 1995.)
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This concept of a skill score highlights the fact that some things are simply more
predictable than others (Mylne, 2006; Palmer and Hagedorn, 2006). This fact must be
kept in mind when considering claims that weather forecasts are “no good.” This is
because the “skill” can be primarily a function of the things-in-themselves, such as the
highly predictable weather in certain regions. Predictability can also be a consequence
of an interaction between the limits of our capacity to predict and the nature of the
weather events. An example would be tornados. They can develop fast, which by itself
makes them hard to predict. Although the precursor factors are well understood (e.g.,
the dynamics within severe thunderstorms), our ability to detect tornados before they
happen is still limited. However, detection is far superior than it was 30 years ago.

The routine analysis of NWS forecaster skill scores since the 1960s makes the domain
of meteorology stand out from many other domains of professional expertise, in that
there is a ready-made database that can be used to derive objective measures of profi-
ciency (Brier, 1950; Charba and Klein, 1980; Jolliffe and Stephenson, 2003; Roebber,
2009; Wilks, 1995). Analyses of skill scores have repeatedly shown that the forecasts
of highly experienced forecasters are greater than those produced by less-experienced
forecasters (Dyer, 1987; Hoffman, Coffey, and Ford, 2000; see also chapter 7).

Furthermore, the skill score of individual (human) forecasts is generally close to
(although a bit lower than) the “consensus skill score,” which is based on an average
of the forecasts of members of a team or an average of the forecasts of a select group of
experts (see Clemen, 1989; Clemen and Murphy, 1986; Murphy, 1993; Sanders, 1973).
The “bit lower than” needs to be understood in terms of factors that can cause a con-
sensus forecast to not show greater skill than that of some individual forecasters. Spe-
cifically, for some weather events and under some circumstances, different forecasters
will use different strategies and rely on different data or cues. Hence, the “crowd” is not
always the wisest.

Forecast verification research has investigated a variety of topics, including the
improvement of skill scores across the period during which college students receive
their education in meteorology (see Roebber and Bosart, 1996b), and the effect of new
technology and forecast products (e.g., Colucci, Knappenberger, and Cepa, 1992; Vis-
locky and Fritsch, 1997.

For example, Roebber and Bosart (1996b) approximated the effect on skill score of
moving a forecaster to a new location—a drop in skill at forecasting temperatures by
5% to 10% relative to a consensus forecast and a drop in skill at forecasting precipita-
tion by 10% or more. This result conforms to a view of meteorologists (e.g., Doswell,
1986¢, 2004) that local knowledge is critical in forecasting. The same conclusion comes
from first-generation expert systems work (see chapter 12; also see Elio, de Haan, and
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Strong, 1987) and particular operational experiences such as in the application of the
PRAVDA system (see chapter 2) to forecasting for the 1996 Summer Olympics (Treinish
and Rothfusz, 1997).

The main goal of this avenue of research is to generate ideas for how to improve
forecasting accuracy (or “resolution”) and reliability, including changes in the methods
used to calculate skill scores and generate consensus forecasts (Baars and Mass, 2005;
Clemen, 1985, 1989; Clemen and Murphy, 1989; Murphy, 1992; Roebber, 2010; Ste-
phenson, 2000). The ultimate goal is to develop methods for generating forecasts that
are “good” in three senses (Murphy, 1993):

1. the forecasters are self-consistent, that is, the forecasts reflect the forecasters’ best judgments,
including expressions of uncertainty;

2. the conditions that are forecast match the actual conditions during the valid time of the fore-
cast; and

3. the forecast takes into account the information requirements and decision-making problems
of the end-users.

Additional goals are to encourage new approaches to training (e.g., the use of per-
ceptual search tasks, feedback, and methods for reducing judgment bias) and suggest
ideas for changes in information systems (i.e., improved displays) (see Stewart and
Lusk, 1994).

We now review two major forecast verification projects that have the clearest impli-
cations regarding forecaster cognition.

How Good Are Those Probability Forecasts?

In 1905-1906, W. Ernest Cooke, an Australian astronomer, suggested that weather fore-
casts be accompanied by an expression of “the weight or degree of probability which
the forecaster himself attaches to the prediction” (Cooke, 1906). Cooke’s proposed
scale was five “degrees of doubt.” His main concern was that the inclusion of such
judgments, for multiple weather parameters, would mean cramming more information
into what were already crammed telegraph messages. In 1951, Philip Williams reported
a study in which U.S. Weather Bureau staff in Salt Lake City accompanied their precipi-
tation forecasts with expressions of their degree of confidence (expressed as percent-
ages). The results were “favorable,” as Williams put it: When the probability of rain was
forecast at 100% confidence, the relative frequency of rain was 88%. When the prob-
ability was zero, the frequency was 3%. Each forecaster showed the greatest percentage
of hits with the forecasts rated at the highest confidence. Williams also suggested that
confidence factors would also be used for temperature forecasts.
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Since Cooke put forth his proposal, there has been continuing debate about what
probability forecasts mean; some forecasters even claim that some forecasters do not
know what probability forecasts mean (see Stuart, Schultz, and Klein, 2007). Does prob-
ability of precipitation mean: (1) the proportion of the forecast area in which precipita-
tion will occur, (2) the percent of time over the day in which there will be precipitation,
(3) the likelihood that precipitation might occur anywhere in the area, (4) the chance
that there will be precipitation but averaged over the forecast area, (5) the proportion of
days just like today on which it rained somewhere in the region, or (6) the product of
the proportion of the area where it will rain multiplied by the forecaster’s confidence in
that judgment? (For a discussion of what the National Weather Service means by POP,
see http://www.srh.noaa.gov/ffc/?7n=pop.)

Alan Murphy and his colleagues (Murphy, 1985; Murphy and Brown, 1983; Mur-
phy and Daan, 1985; Murphy and Winkler, 1970, 1971, 1974a, 1974b, 1977, 1982,
1984; Winkler and Murphy, 1973) comprise the major group of researchers who have
empirically examined aspects of forecaster reasoning and performance with regard to
probability-based forecasts. Within the forecasting community, subjective probability
in forecasting is how well people are able to predict the weather, whereas objective
probability in forecasting is how computer models are able to predict the weather (for a
history of subjective probability-based forecasting vs. objective probability forecasting,
see Murphy and Winkler, 1984). Murphy et al. focused their investigations on the use
of subjective probability in forecasts. In their initial research, Murphy et al. focused on
the evaluation of regional probability of precipitation (POP) forecasts. Some issues in
probability forecasting were discovered in an initial questionnaire survey of forecasters
at a commercial weather services company (Murphy and Winkler, 1971). The question-
naire asked about the information sources that were used and their importance, the
relationships between judgment and forecasting, the meaning of probability forecasts,
and the relation of the forecasts to the eventual weather.

Forecasters disagreed about the meaning of forecasts—as subjective probability or
“fair bet” as to whether precipitation would occur on the forecast area or as relative
frequency of occurrence versus nonoccurrence across similar weather situations. Fore-
casters agreed that the meaning of the POP forecast depended on the situation being
forecast (shower vs. nonshower forecasts, point vs. areal forecasts).

In their subsequent research, Murphy and his colleagues focused on the problem of
the meaning and interpretation of probability forecasts, as well as the psychology of
probabilistic reasoning (see Winkler and Murphy, 1973a, for a discussion of the mathe-
matical representation of alternative strategies for aggregating conditionally dependent
information into subjective probabilities). They solicited data nationwide from NWS
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forecasters (Murphy and Winkler, 1974a). The forecasters reported that POP forecasts
were most often interpreted in terms of relative frequency, and they acknowledged that
POP forecasts were a kind of “hedge.” Most fundamentally, “Forecasters do not “think”
in terms of probabilities. ... Forecasters prefer to obtain a general, overall picture of
weather situations ... before making their POP forecasts” (Murphy and Winkler, 1974a,
p. 1451).

Murphy and Winkler (1974a, 1974b; see also Murphy, 1985; Winkler and Murphy,
1973b) conducted an experiment to see whether NWS forecasters could create “cred-
ible temperature interval forecasts,” reflecting the degree of belief that the actual daily
temperature would fall in some predicted range (today’s high, tomorrow’s low). First,
four experienced Denver Weather Forecast Offices (WFO) forecasters were trained on
one or another method of generating credible intervals (e.g., making “indifference
judgments” to determine the median and then assigning probabilities to intervals of
either fixed or varying size). Then the forecasters used this procedure (in addition to
conducting their usual forecasting tasks) over a four-month period, resulting in data for
more than 120 forecasts. The results showed that there was a tendency for forecasters
to underestimate minimum temperatures and overestimate maximum temperatures.
However, the forecasts were valid and reliable overall, in the sense that the interval
medians came close to the actual observed temperatures (an average difference of only
-0.2 degrees Fahrenheit), and the sense that the new forecasting procedure resulted in
forecasts that beat out the predictions that would be made on the basis of climatologi-
cal data (i.e., the skill scores were positive).

Murphy and Winkler (1977) repeated this experiment at WFOs in Chicago and
Milwaukee. The main result of this series of studies was a proof of concept—that fore-
casters could express their uncertainty in temperature f